
A brief introduction to R

Pre-tutorial handout for “Beyond example extraction:

Quantitative analysis of the JANES corpus”

Maja Miličević
University of Belgrade

m.milicevic@fil.bg.ac.rs

1 What is needed for the tutorial

The focus of the tutorial is on the basics of statistical analysis of corpus data (using data samples from
JANES). To be able to follow the tutorial, you will need R (https://www.r-project.org), which
is a powerful environment for statistical computation and data visualisation. The main advantages
of R compared to other statistical software are its flexibility and availability free of charge. It has a
reputation of being (initially) difficult to learn, but it is well worth the effort to persist.

To save time during the actual tutorial, you are kindly asked to install R on your computer
beforehand (see section 2 for instructions). In addition, as R relies heavily on add-ons for some
advanced options and functionalities not provided in the main suite, please familiarise yourself with
how to install and load packages (see section 3).

We will use the graphical interface that comes with the default R installation, so there is no need
to install any additional programs. The datasets we will work on will be made available during the
tutorial itself; two simple files you can use to test some basic operations (see section 4) are included
with this handout (testdata1.txt and testdata2.csv).

2 Setting up R

To download R, go to https://cran.r-project.org1 and select the appropriate link for your oper-
ating system, as shown in Figure 1.2 Assuming that you use either Windows or Mac OS X:

• For Windows, select the “base” distribution and download the installation file linked under
“Download R 3.2.2 for Windows”.

• For Mac OS X, you will most likely want the “R.3.2.2.pkg” file (or “R-3.2.1-snowleopard.pkg”,
if you have an older version of OS X)

Install proceeds in the usual double-click-and-follow-the-instructions way; default settings will be
fine for most users, so you can go ahead with those (see Figure 2).3 On Windows, an R shortcut will
be created on your desktop and you will see the program folder in your Start Menu; on Mac, a program
icon will be placed in your Applications folder.

1R code and documentation are stored in a server network called CRAN – Comprehensive R Archive Network. This
link points to a mirror site in Austria; other mirror sites are listed at https://cran.r-project.org/mirrors.html.

2R is regularly updated; the current release is R 3.2.2 Fire Safety. If you already have an older version installed, there
is no pressing need to upgrade – new versions fix old bugs, but commands are mostly kept stable across releases.

3See https://cran.r-project.org/doc/manuals/r-release/R-admin.html#Installing-R-under-OS-X and
https://cran.r-project.org/doc/manuals/r-release/R-admin.html#Installing-R-under-Windows for specifics.

1

https://www.r-project.org
https://cran.r-project.org
https://cran.r-project.org/mirrors.html
https://cran.r-project.org/doc/manuals/r-release/R-admin.html##Installing-R-under-OS-X
https://cran.r-project.org/doc/manuals/r-release/R-admin.html##Installing-R-under-Windows

Figure 1: Selecting the operating system

Figure 2: Accepting the default options on Windows and Mac OS X

When you open R, you will see a graphical user interface screen similar to the one shown in Figure 3
(Windows), or Figure 4 (Mac). The main part of the screen is the R Console, a command line window
through which most of your interaction with R will happen – you can use the menus for various kinds
of editing and for setting preferences, but statistical functions are accessed via the command line.

The greater than symbol (>) is a command prompt; if you want R to do something, you need to
type a command you want it to execute, and press Enter. Of course, commands can also be copied
from elsewhere and pasted into R. It is also possible to add notes or comments, by typing a hash
symbol (#); anything following this symbol on the same line will be ignored by R.

If you wish to customise the appearance of the console, use Edit > GUI preferences (Windows),
and R > Preferences or Format (Mac) .

3 Installing R packages

Packages – collections of functions and data – are central to R’s functioning; R comes with a standard
set of preinstalled packages, and many others are available for download and install. Information
about the current state of packages present on the system can be obtained via the Package manager
(Packages > Package manager on both Windows and Mac); the manager can, for instance, be used
to load packages that are installed but are not loaded. You can also see the list of installed packages
via the library() command; all currently loaded packages can be displayed with search().

2

Figure 3: RGui interface on Windows

Figure 4: R.app interface on Mac OS X

3

To install new packages, you can either type install.packages("package.name") in the console,
or you can use the GUI menus. On Windows, if you go to Packages > Install package(s) you will see
a pop-up list of available packages (see Figure 5), from which you can select the package you need
and simply click “OK”. You might be asked if you want to create a personal library to install packages
into; if this happens, select “Yes”. On Mac, you need Packages > Package installer (Figure 6); leave
“CRAN (binaries)” selected, search for a specific package or obtain a list of available packages (“Get
list”), then select the package you want and click “Install Selected”.

Figure 5: Package installer on Windows

Figure 6: Package installer on Mac OS X

Regardless of the installation method, you will also need to select a CRAN mirror site. You can
do that on your own via the chooseCRANmirror() command, which opens a pop-up window that
displays a list of mirror sites, or when prompted by the program. On Windows you can also go to

4

Packages > Set CRAN mirror, while on Mac you can select the default mirror under R > Preferences
> Startup. You are advised to choose a mirror in Austria.

You will most likely decide which packages you need based on the descriptions of what they do,
or based on having heard/read that someone else used a specific package to do the same thing you
want to do. A list of available packages distributed through CRAN is available at https://cran.

r-project.org/web/packages/available_packages_by_name.html. CRAN has very strict rules
about package creation, so you can be sure to find detailed documentation on each package. The
documentation can also be accessed from within R by typing help(package="package.name"), e.g.
help(package="datasets").

Once installed, packages have to be loaded in order to be used – to load a package you need to
type library(package.name). Note that when you quit and reopen R you will need to reload any
packages you need (except for the standard preinstalled packages).

To test package installation and use, go ahead and install “corpora”, a package by Stefan Evert
that provides data and functions for statistical analyses of corpus data. After you install the package
(you should get a confirmation message about that in the console), type the following commands to
load it and see a bit of data:

> library(corpora)

> data(BNCcomparison)

> BNCcomparison

You should now see a table showing 60 English nouns and their frequencies in written and spoken
portions of the British National Corpus (the top part of the table is shown in Figure 7). If that is so,
congratulations, you have installed your first R package! In case you are keen to try other things, have a
look at the package reference manual, available at https://cran.r-project.org/web/packages/
corpora/corpora.pdf.

Figure 7: Top 20 nouns in BNC

4 Getting to know R

4.1 Functions and arguments

A command passed to R typically consists of a function and its arguments, provided in parentheses.
A function instructs R to do something, and the arguments indicate what that instruction is to be
applied to, and how. In a very simple example, sum(1,2) is an addition function that is applied to
arguments 1 and 2.

5

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/corpora/corpora.pdf
https://cran.r-project.org/web/packages/corpora/corpora.pdf

Many functions have default settings, which are used if an argument is not explicitly defined by the
user; this also applies to cases where no arguments or options are provided and a function is followed
by (); note that parntheses must always be provided, whether filled or empty.

A useful list of frequently used functions can be found at http://ww2.coastal.edu/kingw/

statistics/R-tutorials/text/function_ref.txt. A reference manual page for a function can
be displayed by typing help(function.name) or ?function.name, e.g. help(sum) or ?sum. Note,
however, that manual pages tend to be quite technical and can be difficult to understand for a beginner;
an alternative is to simple search the Internet – R has a very lively comunity of users and developers
and it is quite unlikely that you will encounter an issue that is not already explained somewhere.

4.2 Objects

In R you will work with different types of data objects; arguments of functions, for example, typically
include objects to which functions are applied. Objects are created by assignment, using =, <- or ->
(the choice is entirely up to you). You will see no printed output when you create an object, but if
you type the object name you will get its value. After creating an object, you can include it in further
operations by referring to its name. Some simple examples are:

> x = 1

> x

[1] 1

> y <- 1+2

> y

[1] 3

> y*4+x -> z

> z

[1] 13

Several things you need to be careful about:

• R will let you overwrite things you previously created without warning; if you assign something
new to an object name that already exists, the old object content will be gone

• Object names (or any other names you will use in R) cannot contain spaces or dashes – use
underscores and dots instead; you can freely use alphanumeric characters, just keep in mind that
R is case sensitive

• R is flexible about spaces, you can include them or not (x=1 and x = 1 are the same thing, as is
x = 1), but you cannot have spaces between components of a single operator (- > is bad)

4.2.1 Vectors

The basic data object type in R is a vector. Vectors are sequences of numbers or character strings,
typically created using the c() (concatenate) function:

> vector1 = c(2, 4, 6, 8, 10)

> vector1

[1] 2 4 6 8 10

> vector2 = c("Ljubljana","Maribor","Celje","Kranj")

> vector2

[1] "Ljubljana" "Maribor" "Celje" "Kranj"

Note that character strings have to be enclosed in quotation marks. These can be either double or
single quotes, but you need to be consistent.

6

http://ww2.coastal.edu/kingw/statistics/R-tutorials/text/function_ref.txt
http://ww2.coastal.edu/kingw/statistics/R-tutorials/text/function_ref.txt

4.2.2 Data frames

Another central object type are data frames; you are most likely to work with them, in the tutorial
and in the future, as they are the kinds of tables typically used by researchers to organise data. Data
frames can be quite complex and while they can be created in R, it will often make more sense to load
them from external files.

Data frames are tables similar to those typically created in Excel or other spreadsheet software; in
R they are composed of a list of column vectors. The structure of data frames in R must be such
that each variable is represented in its own column, while each case has its own row. An example is
the above BNC table, in which each noun represents a case that is assigned a value for each of two
variables (frequency in the written and frequency in the spoken part of BNC). We can recreate this
table from scratch in the following way (the first five rows will suffice to illustrate the principle):

> BNC5frame = data.frame(

+ noun=c("time","year","people","way","man"),

+ written=c(156300,146308,94568,93325,88370),

+ spoken=c(21720,15593,20939,14037,6460))

> BNC5frame
noun written spoken

1 time 156300 21720

2 year 146308 15593

3 people 94568 20939

4 way 93325 14037

5 man 88370 6460

On a side note, this example also shows that you can type R commands on several lines; if a
command on a single row is not complete, R will show the plus sign (+) as a continuation prompt.
In case you see an unexpected plus sign check your command and see what is missing; you are most
likely to forget to close a bracket.

In order to refer to specific columns in a data frame, you use the dollar ($) symbol. For instance,
if for some reason you would like to add up the frequencies of all 60 nouns in the BNCcomparison
dataset, but only for the written part of the corpus, you can do:

> sum(BNCcomparison$written)

[1] 19277930

To create data frames by importing data from external files, it is best to save your data in tab-
delimited or comma-separated format, in .txt or .csv files. If you are used to working with spreadsheet
software such as Microsoft Excel or OpenOffice Calc, the easiest thing to do is to save your data as
comma-separated values by selecting .csv under “Save As” options (see Figure 8). In Excel you can
proceed in the same way when you want to save a file as tab-delimited; in Calc you again select the
CSV option, but also tick “Edit filter settings”, which in the next step will allow you to select the tab
field delimiter (Figure 9).

Figure 8: Saving comma-delimited tables in Excel (left) and Calc (right)

Once your data file is ready, you can use one of the following functions to get it into R:

• read.table: a generic function that can be used for different table formats

• read.csv: a specialised function for tables with comma-separated fields

• read.delim: a specialised function for tables with tab-delimited fields

7

Figure 9: Saving tab-delimited tables in Excel (left) and Calc (right)

In other words, read.csv and read.delim can be thought of as shortcuts for the two most
frequent table formats. For table import options, in particular for the read.table function, see https:
//stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html. One thing that is
important to mention about all three functions is that you need to pay attention to whether your tables
have headers; use header=TRUE for tables with a header, and header=FALSE for tables without one.

You can now try loading the test data you received with this handout (or alternatively some files
you create on your own). Of course, you will need to change the file location to where you saved the
files on your computer. Don’t forget the quotes!

> testdata1 = read.delim("/Users/Maja/Documents/testdata1.txt", header=TRUE)

> testdata2 = read.csv("/Users/Maja/Documents/testdata2.csv", header=TRUE)

The first file contains the 50 most frequent words from three JANES corpora, Tweet, Forum and
Comment, jointly with their frequencies and frequency ranks. The second file contains the top 50
collocates of the adverb lahko in tweets published by corporate vs. private accounts; for each collocate
there is information about its frequency of co-occurrence with lahko, and about two collocativity
measures. The purpose of the test files is “technical” practice with R, so don’t worry if you don’t know
anything about these measures, or can’t see much sense in the choice of the data.

It is good practice to always check if your data has been loaded correctly. An easy way to do that
is to use the head() command, which will show the first six rows of the data frame, or the summary()

command, which lists some basic info about the data. The former command should give you the
following results for the two test files:

> head(testdata1)
Word Corpus Freq FreqRank

1 je Tweet 1456489 1

2 v Tweet 1096518 2

3 in Tweet 887432 3

4 na Tweet 839581 4

5 pa Tweet 786536 5

6 se Tweet 784677 6

> head(testdata2)
Word Subcorpus Freq T.score MI

1 se corporate 2685 44.368 2.798

2 si corporate 2342 46.350 4.565

3 bi corporate 1591 35.606 3.220

4 je corporate 1389 18.046 0.955

5 pa corporate 1114 21.785 1.526

6 tudi corporate 1007 28.550 3.318

If at some point you get strange-looking outputs, e.g. all data merged in a single column, try
switching to a different import command. Note in particular that the file formats (.csv vs. .txt) do not
strictly correspond to field separator formats; it is perfectly possible to have a tab-delimited .csv file
and a comma-delimited .txt file, and R commands need to be selected based on the separator.

8

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/read.table.html

As above, you can refer to columns within data frames by using $. You can also use square brackets
([]) to single out subsets of data within the same column. For example, in the testdata1 object it
is possible to add up all available word frequencies for each corpus separately:

> sum(testdata1$Freq[testdata1$Corpus=="Tweet"])

[1] 14826068

> sum(testdata1$Freq[testdata1$Corpus=="Forum"])

[1] 12534849

> sum(testdata1$Freq[testdata1$Corpus=="Comment"])

[1] 4016299

Note also that the equal to symbol needs to be written as == rather than just =.
If you have time, you can play with adding up other values in the datasets you loaded into R, or

you can try some other basic functions, such as min(), max(), sqrt() or mean(). Again, do not pay
too much attention to the meaningfulness of applying these operations to the given data, it is only
important that you are beginning to understand how R works.

4.3 Other fundamentals

Another key notion for R is that of workspace, the current working environment, which includes
objects created or loaded by the user (functions, data objects, etc.). At the end of each session, you
will be prompted to save the changes you made to the workspace during that session. If you do keep
the changes, a workspace image will be saved in an .RData file. A related file is .Rhistory, which saves
the commands used in a given session.

The .RData file will by default be saved in R’s global default working directory; this file will
automatically be loaded at the next startup. The default working directory is normally the user’s home
directory, or the Documents folder under it. You can find your working directory by typing the getwd()
command in the console:

> getwd()

[1] "/Users/Maja"

It is a good idea to check where your default working directory is, because – following the usual
command line principles – this is the place from which you can load data by file name alone, rather
than by giving a full path (as was the case in the example in the previous section).4 For instance, if
you place the file testdata2.csv in your default working directory you can just type:

> testdata2 = read.csv("testdata2.csv", header=TRUE)

The defaults will suffice for the tutorial; you can look at the ways of changing the working directory
and saving different R projects separately later on.

To check whether everything you need is loaded, you can list the current contents of the workspace
using the ls() or objects() functions. This can be very useful when you reopen a workspace, as R
does not automatically show a list of previously created objects.

And a final note on decimal separators: Slovenia, unlike English-speaking countries, uses comma as
the decimal mark (e.g. 0,5 rather than 0.5). Given that in R commas are used to separate arguments
of functions, even though it is possible to let the program know about number formats, the simplest
approach is not to interfere with the overall number representation and to set only the output to use
commas. This is easily done via options(OutDec= ","); this command will ensure that the output
you see in the console, as well as the graphs you create, will have commas as decimal marks.

To exit R, type quit() or q().

4Note that on Mac OS X you will have to set hidden files to visible in order to see .RData and .Rhistory.

9

5 Some useful resources

R manuals from CRAN:

• https://cran.r-project.org/manuals.html

• https://cran.r-project.org/doc/manuals/r-release/R-admin.html

• https://cran.r-project.org/other-docs.html

Additional R user interfaces and web applications:

• R Commander (installed as an R package, Rcmdr)

• RStudio (https://www.rstudio.com)

• Tinn-R (http://nbcgib.uesc.br/lec/software/editores/tinn-r/en)

• iNZight (https://www.stat.auckland.ac.nz/~wild/iNZight/index.php)

• Langtest (http://langtest.jp)

Some R courses/tutorials:

• Statistical Inference - a Gentle Introduction for Linguists (http://www.stefan-evert.de/
SIGIL/; contains material from several specialised courses for corpus linguists)

• A hands-on tutorial on using R for (mostly) linguistics research (http://coltekin.net/cagri/
R/r-exercises.html)

Useful books:

• Baayen, R. H. (2008) Analyzing Linguistic Data. A Practical Introduction to Statistics Using R.
Cambridge: Cambridge University Press.

• Field, A., J. Miles and Z. Field (2012) Discovering Statistics Using R. London: SAGE Publica-
tions. (psychology rather than linguistics, but very clear and accessible)

• Gries, S. (2013) Statistics for Linguistics with R. 2nd ed. Berlin and New York: De Gruyter.

• Gries, S. (2009) Quantitative Corpus Linguistics with R: A Practical Introduction. London and
New York: Routledge.

• Larson-Hall, J. (2009). A Guide to Doing statistics in Second Language Research using SPSS.
New York and London: Routledge. (comes with a supplement about R: http://cw.routledge.
com/textbooks/9780805861853/R/full-version.pdf)

A much more comprehensive list of R-related links relevant for linguists is available at
https://experimentalfieldlinguistics.wordpress.com/statistics-and-r-blogs/

6 Acknowledgements

This tutorial is a result of collaboration between several projects, JANES (http://nl.ijs.si/janes/)
- funded by the Slovenian Research Agency, ReLDI (http://reldi.spur.uzh.ch/) - funded by the
Swiss National Science Foundation, and the bilateral Serbian-Slovenian project “The Construction
of Corpora and Lexica of Nonstandard Serbian and Slovenian” - funded by the Slovenian Research
Agency and the Serbian Ministry of Education, Science and Technological Development. For direct
financial support, thanks are due to all organisers of the conference “Slovenščina na spletu in v novih
medijih” – Faculty of Arts of the University of Ljubljana (http://www.ff.uni-lj.si), Slovenian
Language Technologies Society (http://www.sdjt.si), and especially the CLARIN.SI consortium
(http://www.clarin.si).

10

https://cran.r-project.org/manuals.html
https://cran.r-project.org/doc/manuals/r-release/R-admin.html
https://cran.r-project.org/other-docs.html
https://www.rstudio.com
http://nbcgib.uesc.br/lec/software/editores/tinn-r/en
https://www.stat.auckland.ac.nz/~wild/iNZight/index.php
http://langtest.jp
http://www.stefan-evert.de/SIGIL/
http://www.stefan-evert.de/SIGIL/
http://coltekin.net/cagri/R/r-exercises.html
http://coltekin.net/cagri/R/r-exercises.html
http://cw.routledge.com/textbooks/9780805861853/R/full-version.pdf
http://cw.routledge.com/textbooks/9780805861853/R/full-version.pdf
https://experimentalfieldlinguistics.wordpress.com/statistics-and-r-blogs/
http://nl.ijs.si/janes/
http://reldi.spur.uzh.ch/
http://www.ff.uni-lj.si
http://www.sdjt.si
http://www.clarin.si

	What is needed for the tutorial
	Setting up R
	Installing R packages
	Getting to know R
	Functions and arguments
	Objects
	Vectors
	Data frames

	Other fundamentals

	Some useful resources
	Acknowledgements

