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Abstract

An increasing number of language and speech applica-
tions are gearing towards the use of texts from online
sources as input. Despite such rise, not much work
can be found in the aspect of integrated approaches
for cleaning dirty texts from online sources. This
paper presents a mechanism of Integrated Scoring
for Spelling error correction, Abbreviation expansion
and Case restoration (ISSAC). The idea of ISSAC
was first conceived as part of the text preprocessing
phase in an ontology engineering project. Evaluations
of ISSAC using 400 chat records reveal an improved
accuracy of 96.5% over the existing 74.4% based on
the use of Aspell only.

Keywords: Spelling error correction, abbreviation ex-
pansion, case restoration, dirty text, text preprocess-
ing, text cleaning

1 Introduction

The tasks of correcting spelling errors, expanding ab-
breviations and restoring cases are essential to many
language and speech applications such as text and
data mining (Castellanos 2003, Tang, Li, Cao & Tang
2005), and automatic or semi-automatic ontology en-
gineering (Maedche & Volz 2001, Xu, Kurz, Pisko-
rski & Schmeier 2002, Degeratu & Hatzivassiloglou
2002, Novacek & Smrz 2005b). These tasks are typ-
ically performed as part of the text preprocessing
phase in these applications, and are usually known
by other names such as text cleaning and text nor-
malization. Despite the importance of these clean-
ing tasks, the existing applications have been relying
on ad-hoc techniques (e.g. pattern matching, hand-
crafted rules) designed to serve individual needs when
problems arise.

Text preprocessing, especially spelling error cor-
rection, abbreviation expansion and case restoration,
is beginning to attract the attention of language and
speech applications as they gear towards using on-
line sources for textual input. Examples include cor-
porate intranet (Kietz, Volz & Maedche 2000) and
documents retrieved by search engines (Cimiano &
Staab 2005, Sanchez & Moreno 2005, Sombatsrisom-
boon, Matsuo & Ishizuka 2003, Turney 2001) for au-
tomatic or semi-automatic ontology engineering, and
chat records (Castellanos 2003) and emails (Tang
et al. 2005) for text and data mining. The qual-
ity of texts from such sources, in particular blogs,
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emails and chat records can be extremely poor. The
constructions of sentences in blogs, emails and chat
records are filled with spelling errors, ad-hoc abbre-
viations and improper casing. As the different qual-
ity of texts will pose different requirements during
the preprocessing phase, dirty texts can be very de-
manding. With the prevalence of online sources, this
“...annoying phase of text cleaning...”(Mikheev 2002)
becomes much more important and relevant than
ever before. Accordingly, an increasing number of
researchers, particularly in the field of ontology en-
gineering (Maedche & Volz 2001, Novacek & Smrz
2005b, Novacek & Smrz 2005a), has began to acknowl-
edge the impact of the cleanliness of input on the
quality of ontology. In a text mining research, Tang
et al. (Tang et al. 2005) reported an improved terms
extraction accuracy of 38-45% (based on F1-measure)
after the input (i.e. emails) has been cleaned.

In this paper, we propose a mechanism for
Integrated Scoring for Spelling error correction,
Abbreviation expansion and Case restoration (IS-
SAC). ISSAC is built on top of the spell checker
Aspell (Atkinson 2006) for automatically correcting
spelling errors, expanding ad-hoc abbreviations and
restoring case in dirty texts (e.g. chat records). IS-
SAC makes use of six weights based on different infor-
mation sources, namely, original rank by Aspell, reuse
factor, abbreviation factor, normalized edit distance,
domain significance and general significance. Evalu-
ations performed on four different set of chat records
yield an average of 96.5% accuracy in the automatic
correction of spelling errors, expansion of ad-hoc ab-
breviations and restoration of casing.

2 Background and Related Work

Spelling error detection and correction is the task of
recognizing misspellings in texts and providing sug-
gestions for correcting the errors. For example, de-
tecting “cta” as an error and suggesting that the er-
ror be replaced with “cat”, “act” or “tac”. Hence,
it is obvious that suggestions can only be made af-
ter detecting the errors, and more information is usu-
ally required to perform a correct replacement. There
are four basic types of single-error misspelling (Chan,
He & Ounis 2005, Damerau 1964), namely, insertion
(e.g “receivee” with an extra ‘e’ ), deletion (e.g. “re-
ceiv” with the missing ‘e’ ), substitution (e.g. “re-
ceiva” where ‘a’ is supposed to be ‘e’ ) and trans-
position (e.g. “recieve” where ‘i’ and ‘e’ switched).
The task of abbreviation expansion deals with rec-
ognizing shorter forms of words (e.g. “abbr.” or
“abbrev.”), acronyms (e.g. “NATO”) and initialisms
(e.g. “HTML”, “FBI”), and expanding them to their
corresponding words1. The many-to-many relation-

1Some researchers refer to this relationship as abbreviation and

definition or short-form and long-form
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ship between abbreviations and their corresponding
expansions makes this task equally difficult. For case
restoration, improper casing in words are detected
and restored. For example, detecting the letter ‘j’
in “jones” as improper and correcting the word to
produce “Jones”.

Most of the work in detection and correction of
spelling errors, and expansion of abbreviations are
carried out separately. The single-error misspellings,
together with other more complex errors (Kukich
1992), have given rise to and shaped a wide range
of techniques since 1960s. Two of the most stud-
ied classes of techniques for detecting and correcting
spelling errors are minimum edit distance and similar-
ity key. The idea of minimum edit distance techniques
began with Damerau (Damerau 1964) and Levens-
thein (Levenshtein 1966). Damerau-Levenshtein dis-
tance is the minimal number of insertions, deletions,
substitutions and transpositions needed to transform
one string into the other. For example, to change
“wear” to “beard” will require a minimum of two op-
erations, namely, a substitution of ‘w’ with ‘b’, and
an insertion of ‘d’. Many variants were developed
subsequently such as the algorithm by Wagner & Fis-
cher (Wagner & Fischer 1974). The second class of
techniques is similarity key. The main idea behind
similarity key techniques is to map every string into a
key such that similarly spelled strings will have identi-
cal keys (Kukich 1992). Hence, the key, computed for
each spelling error, will act as a pointer to all similarly
spelled words (i.e. suggestions) in the dictionary. One
of the earliest implementation is the SOUNDEX sys-
tem by Odell & Russell (Odell & Russell 1918, Odell
& Russell 1922). SOUNDEX maps a word into a key
consisting of its first letter followed by a sequence of
numbers. For every of the remaining letter l, a num-
ber is assigned according to the rules:

0 if l ∈ {A,E, I,O, U,H,W, Y }

1 if l ∈ {B,F, P, V }

2 if l ∈ {C,G, J,K,Q, S,X,Z}

3 if l ∈ {D,T}

4 if l ∈ {L}

5 if l ∈ {M,N}

6 if l ∈ {R}

Zeros are eliminated and repeated numbers are col-
lapsed. For example, wear → w006 → w6 and
ware → w060 → w6. Since then, many improved
variants were developed such as the Metaphone and
the Double-metaphone algorithm by Philips (Philips
1990), Daitch-Mokotoff Soundex (Lait & Randell
1993) and others (Holmes & McCabe 2002).

Many work on detecting and expanding abbrevi-
ations are conducted in the realm of named-entity
recognition and word-sense disambiguation. Due to
the intensive use of abbreviations in medical texts,
most researches were initiated and tested in the
medical domain. Schwartz & Hearst (Schwartz &
Hearst 2003) presented a simple two-stage process for
extracting abbreviations and their definitions. The
first stage involves the extraction of all abbreviations
and definition candidates based on the adjacency to
parentheses. Stage two identifies the correct defini-
tion out of the many candidates for each abbrevia-
tion. The identification is based on two criteria: the
correct definition must appear in the same sentence,
and the correct definition should have no more than
min(|A|+5, |A|∗2) words where |A| is the number of
characters in an abbreviation A. Park & Byrd (Park
& Byrd 2001) presented an algorithm based on rules

and heuristics for extracting definitions for abbrevia-
tions from texts. Some of the rules and heuristics em-
ployed for this purpose include syntactic cues, prior-
ity of rules, distance between abbreviation and defini-
tion, word casing, and the number of words and stop-
words in the definition. Pakhomov (Pakhomov 2001)
proposed a semi-supervised approach that employs a
hand-crafted table of abbreviations and their defini-
tions for training a maximum entropy classifier. Last
but not least, Sproat et al. (Sproat, Black, Chen, Ku-
mar, Ostendorf & Richards 2001) have undertaken a
project that attempts to address deficiencies in ex-
isting aproaches for various aspects in abbreviation
expansion. In particular, the project focuses on the
difficulty of normalizing text from online sources such
as newsgroups.

In the context of ontology engineering and other
related areas such as text mining, spelling errors cor-
rection, abbreviations expansion and case restora-
tion (Mikheev 2002, Lita, Ittycheriah, Roukos &
Kambhatla 2003, Mikheev 1999) are mainly carried
out as part of the text preprocessing (i.e. text clean-
ing, text filtering, text normalization) phase. A re-
view by Wong et al. (Wong, Liu & Bennamoun 2006)
shows that many existing systems require the in-
put texts to be clean and hence, the techniques for
extracting plain text from various format, correct-
ing spelling errors and expanding abbreviations be-
comes unnecessary. Ontology engineering approaches
such as Xu et al. (Xu et al. 2002), Text-to-Onto
(Maedche & Volz 2001), OntoStruct (Degeratu &
Hatzivassiloglou 2002) and OLE/BOLE (Novacek &
Smrz 2005b, Novacek & Smrz 2005a) are the few
exceptions. In a text mining approach for extract-
ing topics from chat records, Castellanos (Castellanos
2003) presented a very comprehensive list of tech-
niques for text preprocessing. In addition to the com-
mon text preprocessing tasks, the approach employs
a thesaurus, constructed using the Smith-Waterman
algorithm (Smith & Waterman 1981), for correcting
spelling errors and identifying abbreviations. Tang
et al. (Tang et al. 2005) presented a cascaded ap-
proach for cleaning emails prior to any text mining
processing. The approach is composed of four passes
including non-text filtering, paragraph normalization,
sentence normalization, and word normalization.

3 Scoring Mechanism

The idea of ISSAC was initially conceived as part of
an ontology engineering project that uses multiple on-
line sources (i.e. media articles and chat records) with
varying cleanliness. In particular, the use of chat
records as input has required us to place more ef-
fort during the text preprocessing phase. Figure 1
highlights the various spelling errors, ad-hoc abbrevi-
ations and improper casing that occur very frequently
in chat records which are not present in clean text.
ISSAC provides an integrated approach for simul-
taneously correcting spelling errors, expanding ab-
breviations and restoring cases without expert par-
ticipation. Along the same line of thought, Clark
(Clark 2003) defended that “...a unified tool is ap-
propriate because of certain specific sorts of errors”.
To illustrate this idea, consider the error word “cta”.
Do we immediately take it as a spelling error and
correct it as “cat”, or is it a problem with the letter
casing, which makes it a probable acronym? Hence, it
is obvious that the problems of spelling error, abbre-
viation and letter casing are inter-related to a certain
extent. ISSAC provides an integrated approach for
solving the three problems (i.e. spelling error correc-
tion, abbreviation expansion and case restoration) in
the following ways:
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Figure 1: Example of spelling errors, ad-hoc abbrevi-
ations and improper casing in a chat record

• Spelling error correction: The foundation for cor-
recting spelling errors is the spell checker Aspell
(Atkinson 2006). Whenever a word is considered
as an error, Aspell will provide a list of sugges-
tions for correction. This list is the key com-
ponent of ISSAC. The ability of ISSAC to find
the correct replacement will be dependent on the
quality of the suggestions.

• Abbreviation expansion: The foundation for ex-
panding abbreviations is the online abbreviation
dictionary www.stands4.com. When the scoring
process takes place and the corresponding expan-
sions for potential abbreviations are required,
www.stands4.com is consulted. A copy of the
expansion is stored in a local abbreviation dic-
tionary for future reference. The expansions for
potential abbreviations will be added to the sug-
gestion list produced by Aspell. Later, the vari-
ous weights in ISSAC will help in determining if
the error (i.e. potential abbreviation) is an ac-
tual abbreviation and that replacement should
be done using the corresponding expansion.

• Case restoration: There are two ways of restor-
ing cases using ISSAC. The first employs the in-
herent capability of Aspell to recognize proper
nouns without appropriate casing as errors. This
will allow such words to be thrown into ISSAC
for restoration. The second way is based on
the heuristic that valid words rarely appear as
acronyms, and those who do will not fit into the
surrounding context. For example, consider the
phrase with improper casing, “shipping TIME
frame”. Appearing as an independent word,
“TIME” has an equally likely chance of being
a word (with improper casing) or an acronym
for “Timed Interactive Multimedia Extensions”2.

2Source from http://www.stands4.com/bs.asp?st=time&SE=1

When the neighbouring words “shipping” and
“frame” are taken into considerations, then the
probability of “TIME” being an acronym be-
comes significantly less. Based on this idea,
words with all uppercase letters are first turned
into lowercase and then automatically disam-
biguated using ISSAC.

Prior to the scoring, each sentence in the input
text (e.g. chat record) is tokenized to obtain a list of
words T = {t1, ...tw} which will be fed into Aspell.
For each word e that Aspell considers as erroneous,
a list of ranked suggestions S is produced. The list
S is generated by Aspell based on the Metaphone
algorithm (Philips 1990) and near-miss strategy by
its predecessor Ispell (Kuenning 2006). Initially, S =
{s1,1, ..., sn,n} is an ordered list of n suggestions where
sj,i is the jth suggestion with rank i (smaller i indi-
cates higher rank). If e appears in the abbreviation
dictionary, the list S is augmented by appending all
the corresponding m expansions at the front of S as
additional suggestions, all with rank 1. In addition,
the error word e is appended at the end of S with rank
n+1. These augmentations result in an extended list
S = {s1,1, ..., sm,1, sm+1,1, ..., sm+n,n, sm+n+1,n+1},
which is a combination of m suggestions from the
abbreviation dictionary (if e is a potential abbrevi-
ation), n suggestions by Aspell, and the error word e
itself. Placing the error word e back into the list of
possible replacements serves one purpose: to ensure
that if no better replacement is available, we keep the
error word e as it is. Once the extended list S is ob-
tained, each suggestion sj,i is re-ranked using ISSAC
based on a combination of weights, including the ex-
isting rank i. The other weights include the reuse
factor RF , abbreviation factor AF , normalized edit
distance NED, domain significance DS and general
significance GS. The attempt to measure the sig-
nificance of suggestions also takes into account the
neighbouring words l (i.e. word to the left) and r (i.e.
word to the right) of error e. This is based on the as-
sumption that “...errors are isolated and surrounded
by clean context that can be used to correct the errors”
(Clark 2003). The new score for each suggestion sj,i

is defined as

NS(sj,i) = i−1 + NED(e, sj,i)

+RF (e, sj,i) + AF (sj,i)

+DS(l, sj,i, r) + GS(l, sj,i, r)

The different weights are defined in the following sub-
sections.

3.1 Normalized Edit Distance

NED(e, sj,i) ∈ (0, 1] is the normalized edit distance
obtained by normalizing the value of the minimum
edit distance between error e and suggestion sj,i. The
normalized edit distance is defined as

NED(e, sj,i) =
1

ED(e, sj,i) + 1

The minimum edit distance ED between two words
is obtained using the Wagner-Fischer algorithm
(Wagner & Fischer 1974). Wagner-Fischer distance is
preferred over other metrics because it covers multi-
error misspellings (Kukich 1992) and also accounts
for transpositions in addition to insertions, deletions
and substitutions. NED provides higher importance
to suggestions that are lexically similar to the error.
During the evaluation, this weight has shown to be
useful especially for maintaining proper nouns that
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Aspell considers as errors. For example, Aspell mis-
takenly identified “Carrollton”3 as an error and sug-
gested the replacement “Carillon”. Similarly, Aspell
suggested that “iPod” be replaced with “pod”.

3.2 Reuse Factor and Abbreviation Factor

RF (e, sj,i) ∈ {0, 1} is the boolean reuse factor for
providing more weight to suggestion sj,i that has been
previously used for correcting error e. This weight
is to ensure consistency for correcting similar errors.
Certain spelling errors in chat records are repetitive
in nature. For example, the word “received” and
“receive” are often misspelled as “recieved” and “re-
cieve” respectively. Out of the 2016 spellings errors in
an evaluation of 400 chat records, there are about 40
occurrences of “recieve” and its variants. The reuse
factor is obtained through a lookup into a history list
that consists of previous corrections. RF (e, sj,i) will
provide factor 1 if the error e has been previously
corrected with sj,i and 0 otherwise.

AF (sj,i) ∈ {0, 1} is the abbreviation factor for de-
noting that sj,i is a potential abbreviation. A lookup
into the abbreviation dictionary, AF (sj,i) will yield
factor 1 if suggestion sj,i is found to exists in the
dictionary and 0 otherwise. The abbreviation dic-
tionary is automatically updated on demand using
www.stands4.com.

3.3 Domain Significance

DS(l, sj,i, r) ∈ [0, 1] measures the domain signifi-
cance of suggestion sj,i based on its appearance in
the domain corpora. The domain significance weight
is inspired by the TF-IDF (Robertson 2004) measure
which is commonly used in Information Retrieval.
In addition to individual occurrence, the frequency
of appearance of sj,i together with its neighbouring
words l and r is also taken into consideration. The
weight is defined as

DS(l, sj,i, r) =
fsj,i

+ flsj,ir
∑m+n+1

k=1 (fsk,i
+ flsk,ir)

e−
NDsj,i

ND

where fsj,i
is the frequency of occurrence of sug-

gestion sj,i in the domain corpora and flsj,ir is the
frequency of occurrence of suggestion sj,i together
with neighbours l and r in the domain corpora.
∑m+n+1

k=1 (fsk,i
+ flsk,ir) is the sum of the frequencies

of occurrences of all individual suggestions, and of the
frequencies of occurrences of all suggestions together
with neighbours l and r in the domain corpora. ND is
the total number of documents in the domain corpora
and NDsj,i

is the number of documents in the domain
corpora that contain suggestion sj,i. The significance
of sj,i will increase proportionally to the number of
times the suggestion appears in the domain corpora.

Raising e to the power of −
NDsj,i

ND
has similar effect

as the traditional IDF (Robertson 2004), namely, as
an offset to suggestions that occur too frequently.

3.4 General Significance

GS(l, sj,i, r) ∈ [0, 1] measures the general significance
of suggestion sj,i based on its appearance in the gen-
eral collection (e.g. Goggle). The purpose of general
significance is similar to that of the domain signifi-
cance. The weight is defined as

3A city in the state of Texas. Source from
http://www.ci.carrollton.tx.us/

GS(l, sj,i, r) =
NGlsj,ir

∑m+n+1
k=1 NGlsk,ir

e
−

NGsj,i

m+n+1

k=1
NGsk,i

where NGlsj,ir is the number of documents in the
general collection that contains suggestion sj,i within
the neighbours l and r, and NGsj,i

is the number of
documents in the general collection that contains sug-
gestion sj,i alone. This weight is especially useful for
two reasons. Firstly, this weight will provide due con-
sideration for the use of proper names such as “iPod”
and “XBox” that are not part of Aspell’s dictionary.
Secondly, the contemporary use of English in areas
like business and computing has given rise to various
entirely new words that results from combinations of
existing ones. General collection of documents such
as www.google.com is the best candidate when con-
sidering the spelling for new words.

4 Evaluation and Results

Evaluations are conducted using chat records pro-
vided by 247Customer.com4. As a provider of cus-
tomer lifecycle management services, the chat records
by 247Customer.com offer a rich source of domain
information in a natural setting (i.e. conversations
between customers and agents). Consequently, these
chat records are filled with spelling errors, ad-hoc ab-
breviations, improper casing and many other prob-
lems that are considered as intolerable by many of
the existing language and speech applications. Con-
sequently, these chat records become the ideal source
for evaluating the scoring mechanism presented in
this paper. Four sets of test data, each comes in
an XML file of 100 chat records, are employed for
evaluations. Each XML file has an average of 10,000
words. The chat records and the Google search en-
gine constitutes the domain corpora and general col-
lection respectively while GNU Aspell version 0.60.4
(Atkinson 2006) is employed for detecting errors and
generating suggestions. Four evaluations are per-
formed, one for each set based on the steps described
in Algorithm 1.

Determining whether cISSACu,r and cAspellu,r is
a correct replacement for erroru,r is a delicate process
that must be performed manually. To illustrate, con-
sider the error “itme”. It is difficult to automatically
determine whether “itme” should be replaced with
“time” or “item”. Without neighbouring words, both
replacements are of equally likely nature. Appear-
ing as an error (“shipping itme frame”) in the first
evaluation, Aspell’s first choice for error1,r = itme is
cAspell1,r = item, while ISSAC ranked cISSAC1,r =
time as the replacement. It is only proper for us to
rate the replacement by Aspell as wrong given the
error’s appearance in the context of “shipping” and
“frame”. In another error (“Chad amateau <” where
< is the end-of-sentence character) in the third eval-
uation, Aspell suggested “amateur” as the most ideal
replacement while ISSAC suggested “Amateau”. As
there is no such word as “Amateau” in the dictionary,
we would be tempted to immediately rate the sugges-
tion by Aspell as correct if we did not take into con-
sideration the fact that “Chad Amateau” is a proper
name.

The evaluation of the errors and replacements are
conducted in an integrated manner. The errors are
not classified into spelling errors, ad-hoc abbrevia-
tions and improper casing. For example, should the
error “az” (“AZ” is the abbreviation for the state of

4http://www.247customer.com/
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Algorithm 1 Evaluation of ISSAC
1: input four sets of chat records CR1, CR2, CR3,

CR4
2: for each set of chat records CRu do
3: initialize EV Au, an array of triplets

(erroru,r,cISSACu,r,cAspellu,r) where
erroru,r is the rth error in the uth evalu-
ation, cISSACu,r is the correction proposed
by ISSAC for the rth error in the uth evalu-
ation, and cAspellu,r is the first suggestion
proposed by Aspell for the rth error in the uth

evaluation
4: for each sentence in CRu do
5: Tokenize the sentence to produce a set of

words T = {t1, ..., tw}
6: for each word t ∈ T do
7: if t consists of all uppercase then
8: Turn all letters in t to lowercase
9: else if t consists of all digits then

10: continue with next term
11: end if
12: Feed t to Aspell
13: if t is identified as error by Aspell then
14: initialize NSC, an array of new scores

for all suggestions for error word t
15: A set of n suggestions for word t, S =

{s1,1, ..., sn,n} is generated by Aspell
16: Append error t at the end of S
17: Perform lookup in the abbreviation dic-

tionary and retrieve all corresponding m
expansions for t

18: Append the m expansions at the front
of S

19: The additional suggestions will produce
an extended list S = {s1,1, ..., sm,1,
sm+1,1, ..., sm+n,n, sm+n+1,n+1}

20: for each suggestion sj,i ∈ S do
21: Execute ISSAC to obtain the new

score NS(sj,i)
22: Push NS(sj,i) into NSC
23: end for
24: Sort NSC in descending order
25: Form the triplets (t,NSC1,sm+1,1)

where NSC1 is the first element in
the sorted NSC (i.e. the replacement
proposed by ISSAC) and sm+1,1 is the
first suggestion by Aspell

26: Push the triplets (t,NSC1,sm+1,1) into
the array EV Au

27: else
28: continue with next term
29: end if
30: end for
31: end for
32: for each triplets (erroru,r, cISSACu,r,

cAspellu,r) in EV Au do
33: if cISSACu,r is the correct replacement for

erroru,r then
34: Rate cISSACu,r as 1
35: else
36: Rate cISSACu,r as 0
37: end if
38: if cAspellu,r is the correct replacement for

erroru,r then
39: Rate cAspellu,r as 1
40: else
41: Rate cAspellu,r as 0
42: end if
43: end for
44: end for
45: Count the number of cISSACu,r and cAspellu,r

rated as 1 for all the four evaluations EV Au=1,
EV Au=2, EV Au=3 and EV Au=4

Table 1. Accuracy of Aspell and ISSAC across four
evaluations

Evaluation 1, 

EVA u=1

Evaluation 2, 

EVA u=2

Evaluation 3, 

EVA u=3

Evaluation 4, 

EVA u=4
Average

number of correct 

replacements using 

ISSAC,

cISSAC u,r =1

97.06% 97.07% 95.92% 96.20% 96.56%

number of correct 

replacements using 

Aspell,

cAspell u,r =1

74.61% 75.94% 71.81% 75.19% 74.39%

“Arizona”) in the context of “Glendale az <” be con-
sidered as an abbreviation or improper casing? The
boundaries between the different types of dirtiness
that occur in real-world texts, especially those from
online sources, are not clear. This is the main reason
behind the increasing number of efforts that attempt
to provide techniques to handle various dirtiness in an
integrated manner (Tang et al. 2005, Mikheev 2002,
Sproat et al. 2001, Clark 2003). After a careful evalu-
ation of all replacements suggested by Aspell and by
ISSAC for all 2016 errors, we discovered a promising
improvement in accuracy using the latter. The ac-
curacy is obtained by dividing the number of errors
with correct replacement by the total number of er-
rors identified by Aspell. As shown in Table 1, the use
of the first suggestion by Aspell as replacement yields
an average of 74.4%. With the addition of the various
weights that form ISSAC, an average increase of 22%
was achieved, resulting to an improved accuracy of
96.5%.

5 Discussion

The list of suggestions and the initial ranks provided
by Aspell are integral parts of ISSAC. The achieve-
ment of an average of 74.4% accuracy by Aspell it-
self, given the extremely poor nature of the texts
shows the existing strength of the Metaphone algo-
rithm and near-miss strategy. The further average
increase of 22% in accuracy demonstrates the poten-
tial of the combined weights with regard to spelling
error correction and other related areas. In the course
of analyzing the remaining 3.5% of errors which have
been wrongfully replaced, we have discovered several
interesting points as explained below.

Firstly, half of the errors with wrong correc-
tions are actually manifestations of certain inade-
quacies that ISSAC has inherited from Aspell. In
other words, the accuracy of correction by ISSAC is
bounded by the coverage of the list of suggestions
S produced by Aspell. About 2% of wrong replace-
ments is due to the absence of the correct replace-
ment from the list of suggestions produced by Aspell.
For example, the error “dotn” in the context of “i
dotn have” was wrongfully replaced by both Aspell
and ISSAC as “do-tn” and “do tn” respectively. Af-
ter a look into the evaluation log, we realized that
the correct replacement “don’t” was not in S. In an-
other case, error “everyhitng” (as in “over everyhitng
again”) was wrongfully replaced with “overhung” and
“everyhitng” by Aspell and ISSAC respectively. In
such cases, there is no way for ISSAC to propose the
correct replacement except that error e is an abbre-
viation. If e is an abbreviation, then the correct re-
placement (i.e. expansion) would have made its way
into the extended list S as one of the first m sug-
gestions {s1, ..., sm} (i.e. all possible expansions for
potential abbreviation e).

Secondly, the use of the two immediate neighbour-
ing words l and r to inject more contextual consid-
eration into domain and general significance has con-

Proc. Fifth Australasian Data Mining Conference (AusDM2006)

87



tributed to the large portion of the increase in accu-
racy. This claim is based on the result of a separate
evaluation similar to those presented in the previous
section with one exception: we omit the domain DS
and general GS significance from ISSAC. A stunning
drop of accuracy was observed, with an average of
only 77%. Despite the contribution of l and r to the
overall performance of ISSAC, it is by no means fool-
proof. About 1% out of the total errors with wrong
replacement are due to two flaws related to l and r.

• In the first one, the neighbouring words them-
selves are not correctly spelled. For example,
the error “iberal” (in the context of “morel iberal
return”) is incorrectly replaced by both Aspell
and ISSAC. This is due to the low values of DS
and GS which fail to capture the actual signifi-
cance of the correct replacement (i.e. “liberal”)
with respect to the erroneous left word “morel”.
Nonetheless, as shown by the low percentage of
such flaw, this problem is not drastic. An er-
ror “gto” (in the context of “lookin gto buy”)
was correctly replaced with “to” by ISSAC even
though the left word “lookin” is erroneous.

• In the second case, the left and right words are in-
adequate. This is especially true when the errors
to be corrected are located at the start and end of
sentence. For example, there are no left and right
words for the error “winsted” in the context of
“> winsted <”. Such phenomena are the same as
not using contextual information when attempt-
ing to correct an error. In such cases, the most
popular suggestion sj,i ∈ S in both domain and
general collection will triumph. Even with one
or both neighbouring words present, incorrect re-
placement is also possible due to the indiscrimi-
native nature of the neighbours. In the example
“both ocats <”, the left word “both” does not
provide much clue as to adequately discriminate
between suggestions such as “coats”, “cats” and
“acts”. Such neighbouring words are in sharp
contrast to better ones such as “wood” as in “the
mindi wood”.

Lastly, the remaining 0.5% can be seen as anoma-
lies where ISSAC does not apply. There are two cases
for these anomalies:

• Similar to throwing a dice, the first group of
anomalies is characterized by the equally likely
nature of all the possible replacements. For ex-
ample, in the context “Janice cheung <”, the
left word is correctly spelled and has adequately
confined the suggestions to proper names even
though the right word is absent. In addition,
the correct replacement “Cheung” is present as
a suggestion sj,i ∈ S. Despite all these, both
Aspell and ISSAC decided to replace “cheung”
with “Cheng”. A look into the evaluation log re-
veals that the surname “Cheung” is as common
as “Cheng”. In such cases, the probability of
replacing e with the correct replacement is c−1

where c is the number of suggestions with ap-
proximately same NS(sj,i).

• The second group of anomalies are due to con-
trasting value of certain weights, especially NED
and i−1, that causes wrong replacements to be
made. For example, in the case “cannot chage
an”, ISSAC replaced the error “chage” with
“charge” instead of “change”. All the other
weights for “change” are comparatively higher
(i.e. DS and GS) or the same (i.e. RF , NED
and AF ) as “charge”. Such inclination indicates
that “change” is the most proper replacement

given the various cues. Nonetheless, the orig-
inal rank by Aspell for “charge” is i=1 while
“change” is i=6. As smaller i indicates higher
rank, the inverse of the original rank by Aspell
i−1 results in the plummeting of the combined
weight for “change”.

6 Conclusion and Future Work

As more and more language and speech applications
open up to the use of online sources, the need to
handle dirty texts becomes inevitable. Regardless of
whether we acknowledge this fact, the quality of out-
put and the proper functioning of such applications
are, to a certain extent, dependent on the cleanli-
ness of the input texts. Most of the existing tech-
niques for correcting spelling errors, expanding ab-
breviations and restoring cases are studied separately.
We, along with an increasing number of researchers,
have acknowledged the fact that many errors in texts
are composite in nature. As we have demonstrated
during our evaluation and discussion in this paper,
many errors are difficult to be classified as either
spelling errors, ad-hoc abbreviations or improper cas-
ing. In this paper, we presented ISSAC, an integrated
scoring mechanism that builds upon the famous spell
checker Aspell for simultaneously providing solution
to spelling errors, abbreviations and improper cas-
ing. ISSAC combines weights based on various in-
formation sources, namely, original rank by Aspell,
reuse factor, abbreviation factor, normalized edit dis-
tance, domain significance and general significance.
Four evaluations conducted over 40,000 words have
demonstrated a promising accuracy at an average of
96.5%.

Even though the idea for ISSAC was first moti-
vated and conceived within the paradigm of ontology
engineering, we see great potential in further improve-
ments and fine-tuning for a wide range of uses, espe-
cially in language and speech applications. We hope
that an integrated approach such as ISSAC will pave
the way for more research in providing a complete so-
lution for text preprocessing (i.e. text cleaning) in
general. At this moment, the various factors and
weights are considered as equally important in this
version of ISSAC. Depending on the applications or
dirtiness of the texts, changes to the existing weights
or even adding new weights may be necessary. We
are planning to vary the importance of the different
weights and fine-tune ISSAC to possibly improve the
remaining 3.5% flaws pointed out in the discussion
section. In addition, we have plans to extend the
evaluation of ISSAC using other types of data such
as news articles from online media sites. Last but
not least, the assessment of the scalability of ISSAC
in terms of runtime and accuracy using much larger
datasets will also be explored.
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