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Abstract
I-vectors enable a fixed-size compact representation of speech signals of arbitrary durations. In recent years they have become the state-
of-the-art representation of speech signals in text-independent speaker recognition. For practical reasons most systems assume that the
i-vector estimates are highly reliable. However, this assumption is valid only in the case when i-vectors are extracted from recordings
of sufficient length, but for short recordings the assumption does not hold any more. To address the problem of duration variability we
propose a simple duration-based preprocessing weighting scheme that accounts for different reliability of i-vector estimates. We evaluate
the proposed approach in the scope of NIST 2014 i-vector machine learning challenge, where we achieved competitive results.

Sistem za prepoznavo govorcev Alp-ULj s prireditve “NIST 2014 i-Vector Challenge”
I-vektorji omogočajo zgoščeno predstavitev govornih signalov poljubne dolžine v obliki vektorjev fiksne razsežnosti. V zadnjih letih
so postali ena izmed najuspešnejših tehnologij na področju prepoznave govorcev. Zaradi praktičnih razlogov ponavadi predpostavimo,
da je ocena i-vektorjev zelo zanesljiva. Ta predpostavka velja le v primeru, ko i-vektor ocenimo iz dovolj dolgega govornega posnetka,
medtem ko je pri posnetkih krajše dolžine ta predpostavka v veliki meri kršena. V prispevku predlagamo posebno metodo predobdelave,
v kateri na enostaven način upoštevamo dolžino posnetkov, iz katerih smo i-vektorje ocenili. Predlagano rešitev smo ovrednotili v okviru
prireditve “NIST 2014 i-Vector Challenge”, na kateri smo dosegli vzpodbudne rezultate.

1. Introduction
The area of speaker recognition has made significant

progress over recent years. Today, recognition systems re-
lying on so-called i-vectors, introduced in (Dehak et al.,
2011), have emerged as the de-facto standard in this area.
Most of the existing literature on i-vector-based speaker
recognition focuses on recognition problems, where the i-
vectors are extracted from speech recordings of sufficient
length. The length of the recordings is predefined by the
speech corpus used for the experimentation and typically
does not drop below a length that would cause problems to
the recognition techniques. In practical applications, how-
ever, speaker recognition systems often deal with i-vectors
extracted from short recordings, which may be estimated
less reliably than i-vectors extracted from recordings of suf-
ficient length.

The problem of duration variability is known to be
one of importance for practical speaker-recognition appli-
cations and has also been addressed to a certain extent
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in the literature in the context of i-vector-based speaker-
recognition systems, e.g. (Sarkar et al., 2012; Kanaga-
sundaram et al., 2011; Hasan et al., 2013a; Mandasari
et al., 2011; Garcia-Romero and McCree, 2013; Kenny
et al., 2013; Cumani et al., 2013; Kanagasundaram et
al., 2014; Hasan et al., 2013b; Stafylakis et al., 2013).
The most recent solutions of the duration-variability prob-
lem, e.g. (Garcia-Romero and McCree, 2013; Kenny et al.,
2013; Cumani et al., 2013) do not treat i-vectors as point es-
timates of the hidden variables in the eigenvoice model, but
rather as random vectors. In this slightly different perspec-
tive, the i-vectors appears as posterior distributions, param-
eterized by the posterior mean and the posterior covariance
matrix. Here, the covariance matrix can be interpreted as a
measure of the uncertainty of the point estimate that relates
to the duration of the speech recording used to compute the
i-vectors.

In this paper we propose a slightly different approach
and try to compensate for the problem of duration vari-
ability of the speech recordings through weighted statis-
tics. Typically, feature-transformation techniques com-
monly used in the area of speaker recognition, such as prin-
cipal component analysis (PCA) or within-class covariance
normalization (WCCN) estimate the covariance matrices
and sample means by considering the contribution of each
available i-vector equally in the statistics, regardless of the
fact that the i-vectors may be estimated unreliably. To ad-
dress this point, we associate with every i-vector a weight
that is proportional to the duration of the speech recording
from which the i-vector was extracted. This weight is then
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used to control the impact of a given i-vector to the overall
statistics being computed. The described procedure can be
applied to any feature transformation technique and results
in duration-weighted techniques that should lead to better
estimates of the feature transforms.

We evaluate the proposed weighting scheme in the
scope of the NIST 2014 i-vector machine learning chal-
lenge (IVC). The goal of the challenge is to advance
the state-of-technology in the area of speaker recognition
by providing a standard experimental protocol and pre-
computed i-vectors for experimentation. Based on the data
provided by the challenge, we show that it is possible to
apply the proposed weighting scheme to supervised as well
as unsupervised feature-transformation techniques and that
in both cases performance gains can be expected. With our
best performing (duration-weighted) system we managed
to achieve a minimal decision-cost-function (DCF) value
of 0.280, a 27% relative improvement over the baseline sys-
tem.

2. Prior work
Two of the most frequently used classification methods

in i-vector-based speaker recognition are the cosine similar-
ity (Dehak et al., 2010) and probabilistic linear discriminant
analysis (PLDA), independently developed for face (Prince
and Elder, 2007; Li et al., 2012) and speaker recogni-
tion (Kenny, 2010). Since its introduction, the PLDA model
has been extended in different ways, e.g. the underlying
Gaussian assumption have been relaxed (Kenny, 2010), the
parameters of the model have been treated as random vari-
ables (Villalba and Brummer, 2011) and an extension to the
mixture case has been proposed as well (Senoussaoui et al.,
2011).

Before given to the classifier, i-vectors are usually
preprocessed in various ways. Common preprocessing
methods include whitening (PCA), linear discriminant
analysis (LDA) and within-class covariance normalization
(WCCN), which can be applied in combination. Another
important preprocessing step is length normalization, as
it turns out (Garcia-Romero and Espy-Wilson, 2011) that
length normalization brings the i-vectors closer to a normal
distribution and therefore provides for a better fit with the
assumptions underlying Gaussian PLDA.

3. Duration-based weighting
In this section we introduce our duration-dependent

weighting scheme. We assume that the front-end process-
ing of the speech recording has already been conducted
and that all we have at our disposal is a set of extracted i-
vectors and a single item of metadata in the form of the du-
ration of the recording from which a given i-vector was ex-
tracted (NIST, 2014). Under the presented assumptions the
solutions to the problem of duration variability that treat the
i-vectors as random variables characterized by a posterior
distribution, such as those presented in (Garcia-Romero and
McCree, 2013; Kenny et al., 2013; Cumani et al., 2013), are
not applicable.

The basic step in computing the feature transform for
most feature-extraction (or feature-transformation) tech-
niques (e.g., PCA, WCCN, NAP, etc.) is the calculation of

the sample mean and scatter (or covariance) matrix. Given
some training i-vectors x1,x2, . . . ,xn, with xi ∈ Rm and
i = 1, 2, . . . , n, the sample mean m and scatter matrix S
can be calculated by the following formulas:

m =
1

n

n∑
i=1

xi (1)

and

S =
1

n

n∑
i=1

(xi −m)(xi −m)T. (2)

The definition of the sample mean and scatter matrix in
Eqs. (1) and (2) assume that all the training vectors xi (i =
1, 2, . . . , n) are equally reliable and are, therefore, given
equal weights when computing the mean and covariance
matrix. While such an interpretation of the equations is
(most likely) valid if the training vectors are computed from
speech recordings of sufficient length, this may not be true
if some of the vectors are extracted from short recordings.
In this case, some of the training vectors are unreliable and
should not contribute equally to the computed statistics.

To account for the above observation we propose to
multiply the contribution of each i-vector in Eqs. (1) and
(2) by the weight which corresponds to the duration of the
recording from which the vector was extracted. This modi-
fication gives the following formulas for the weighted mean
mw and weighted scatter matrix Sw:

mw =
1

T

n∑
i=1

tixi (3)

and

Sw =
1

T

n∑
i=1

ti(xi −mw)(xi −mw)T, (4)

where T =
∑n

i=1 ti.
Note that the presented weighting scheme reduces to the

(non-weighted) standard version if the speech recordings,
from which the training vectors are extracted, are of the
same length. If this is not the case, the presented weighting
scheme gives larger emphasis to more reliably estimated
i-vectors. In the remainder, we present modifications of
two popular feature-transformation techniques based on the
presented weighting scheme, namely, PCA and WCCN. We
first briefly describe the theoretical basis of both techniques
and then show, how they can be modified based on the pre-
sented statistics.

3.1. Principal component analysis
Principal component analysis (PCA) is a powerful sta-

tistical learning technique with applications in many dif-
ferent areas, including speaker verification. PCA learns a
subspace from some training data in such a way that the
learned basis vectors correspond to the maximum variance
directions present in the original training data (V. Štruc and
Pavešić, 2008). Once the subspace is learned, any given
feature vector can be projected into the subspace to be pro-
cessed further or to be used with the selected scoring pro-
cedure. In state-of-the-art speaker-verification systems the
feature vectors used with PCA typically take the form of
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i-vectors, which after processing with the presented tech-
nique are fed to a scoring technique, based on which iden-
tity inference is conducted.

Formally PCA can be defined as follows. Given a data
matrix X = [x1,x2, . . . ,xn],xi ∈ Rm containing in its
columns n training vectors xi, for i = 1, 2, . . . , n, PCA
computes a subspace basis U ∈ Rm×d by factorizing of the
covariance matrix Σ of the vectors in X into the following
form:

Σ = UΛUT , (5)

where U = [u1,u2, . . . ,ud],ui ∈ Rm denotes an orthogo-
nal eigenvector vector matrix (i.e., the projection basis) and
Λ = diag{λ1, λ2, . . . , λd, } stands for a diagonal eigen-
value matrix with the eigenvalues arranged in decreasing
order. Note that if Σ is full-rank the maximum possible
value for the subspace dimensionality is d = n, if the co-
variance matrix is not full-rank the upper bound for d is
defined by the number of non-zero eigenvalues in Λ. In
practice, the dimensionality of the PCA subspace d is an
open parameter and can be selected arbitrarily (up to the
upper bound).

Based on the computed subspace basis, a given feature
vector x can be projected onto the d−dimensional PCA
subspace using the following mapping:

y = UT (x− µ), (6)

where y ∈ Rd stands for the PCA transformed feature vec-
tor.

Commonly, the above transformation is implemented in
a slightly different form, which next to projecting the given
feature vector x into the PCA subspace, also whitens the
data:

y = (UΛ−1/2)T (x− µ). (7)

3.2. Within-class covariance normalization
Within-Class Covariance Normalization (WCCN) is a

feature transformation technique originally introduced in
the context of Support Vector Machine (SVM) classifica-
tion (Hatch and Stolcke, 2006). WCCN can under certain
conditions be shown to minimize the expected classifica-
tion error by applying a feature transformation on the data
that as a result whitens the within-class scatter matrix of the
training vectors. Thus, unlike PCA, WCCN represents a
supervised feature extraction/transformation technique and
requires the training data to be labeled. In state-of-the-art
speaker verification systems, the feature vectors used with
WCCN typically represent i-vectors (or PCA-processed i-
vectors) that after the WCCN feature transformation are
subjected to a scoring procedure.

Typically WCCN is implemented as follows. Consider
a data matrix X = [x1,x2, . . . ,xn],xi ∈ Rm containing
in its columns n training vectors xi, for i = 1, 2, . . . , n,
and let us further assume that these vectors belong to N
distinct classes C1, C2, . . . , CN with the j-th class contain-
ing nj samples and n =

∑N
j=1 nj . WCCN computes the

transformation matrix based on the following Cholesky fac-
torization:

Σ−1w = LLT, (8)

where L and LT stand for the lower and upper triangular
matrices, respectively, and Σ−1w denotes the inverse of the
within-class scatter matrix computed from the training data.

Once computed, the WCCN transformation matrix L
can be used to transform any given feature vector x based
on the following mapping:

y = LTx, (9)

where y ∈ Rm stands for the transformed feature vector.
The weighted version of the WCCN transform can be

obtained by replacing the standard withing-class scatter
matrix with the weighted one.

4. The I-vector challenge
We evaluate the feasibility of the proposed duration-

weighted scheme in the scope of IVC. In this section we
provide some basic information on the challenge, present
the experimental protocol and define the performance met-
ric used to assess the recognition techniques.

4.1. Challenge description
The single task of IVC is that of speaker detection,

i.e., to determine whether a specified speaker (the target
speaker) is speaking during a given segment of conversa-
tional speech. The IVC data is given in the form of 600-
dimensional i-vectors, divided into disjoint development
and evaluation sets. The development set consists of 36,572
(unlabeled) i-vectors, while the evaluation set consists of
6,530 target i-vectors belonging to 1,306 target speakers (5
i-vectors per speaker) and 9,643 test i-vectors of a unknown
number of speakers. Note that no explicit information is
provided on whether the 1,306 speakers are distinct or not.
Hence, it is possible that some of the target identities are
duplicated.

The experimental protocol of IVC defines that a total
of 12,582,004 experimental trials need to be conducted,
where each trial consists of matching a single i-vector from
the 9,643 test vectors against a given target model con-
structed based on the five target i-vectors belonging to the
targeted speaker. It should be noted that — according to
the rules (NIST, 2014) — the output produced for each trial
must be based (in addition to the development data) solely
on the training and test segment i-vectors provided for that
particular trial, while the i-vectors provided for other trials
may not be used in any way.

The durations of the speech segments used to compute
the i-vectors for IVC are sampled from a log-normal dis-
tribution with a mean of 39.58 seconds. This suggests that
methods that take the uncertainty of the i-vectors due to
duration variability into account should be effective in the
challenge. However, since the only information provided
with each i-vector is the duration of the speech recording
used to compute the corresponding i-vector, techniques ex-
ploiting the posterior covariance, such as (Garcia-Romero
and McCree, 2013; Kenny et al., 2013; Cumani et al.,
2013), are not feasible. Nevertheless, we expect that per-
formance improvements should be possible by augmenting
the information contained in the i-vectors with duration in-
formation in one way or another.
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5. Experiments and results
5.1. Experimental setup

The experiments presented in the remainder are con-
ducted in accordance with the experimental protocol de-
fined for the i-vector challenge and presented in Sec-
tion 4.1.. The processing is done on a personal desktop
computer using Matlab R2010b and the following open
source toolboxes:

• the PhD toolbox (Štruc and Pavešić, 2010; Štruc,
2012)1, which among others features implementations
of popular dimensionality-reduction techniques;

• the Bosaris toolkit (Brummer and de Villiers, 2011)2,
which contains implementations of score calibration,
fusion and classification techniques;

• the Liblinear library (with the Matlab interface) (Fan
et al., 2008)3, which contains fast routines for training
and deploying linear classifiers such as linear SVMs
or logistic-regression classifiers.

All the experiments presented in the next sections can easily
be reproduced using the above tools and functions.

5.2. Experiments with PCA
Our duration-dependent weighting scheme is based on

the assumption that not all the available i-vectors are com-
puted from speech recordings of the same length and are,
therefore, not equally reliable. If the i-vectors are com-
puted from recordings of comparable length, the weighting
scheme would have only little effect on the given technique,
as similar weights would be assigned to all the statistics and
the impact of the weighting would basically be lost. On
the other hand, if the i-vectors are computed from speech
recordings of very different lengths, our weighting scheme
is expected to provide more reliable results, as more reliable
i-vectors are given larger weights when computing statistics
for the given speaker-verification technique.

To assess our weighting scheme we first implement the
baseline technique defined for the i-vector challenge and
use the baseline performance for comparative purposes.
Note that IVC defines a PCA-based system used together
with cosine scoring as its baseline. Specifically, the base-
line system consists of the following steps (NIST, 2014)

• estimation of the global mean and covariance based on
the development data,

• centering and whitening of all i-vectors based on PCA
(see Eq. 7),

• projecting all i-vectors onto the unit sphere (i.e., length
normalization: x← x√

xTx
),

• computing models by averaging the five target i-
vectors of each speaker and normalizing the result to
unit L2 norm, and

1http://luks.fe.uni-lj.si/sl/osebje/vitomir/face tools/PhDface
2https://sites.google.com/site/bosaristoolkit
3http://www.csie.ntu.edu.tw/˜cjlin/liblinear

Table 1: Effect of the proposed weighting scheme on the
baseline system defined for IVC. The Table shows minDCF
values achieved by the baseline and weighted baseline sys-
tems as returned by the web-platform of the IVC as well as
the relative change (in%) in the minDCF value, achieved
with the weighting.

Technique Baseline Weighted baseline minDCFrel

Score 0.386 0.372 3.63%

Table 2: Effect of excluding samples from the development
set of the IVC data on the performance of the baseline and
weighted baseline systems. The exclusion criterion is a
threshold on the duration of the recording used to compute
the i-vectors. The Table shows minDCF values as returned
by the web-platform of the IVC.

Exclusion criterion < 10s < 15s < 20s < 25s

Baseline 0.385 0.381 0.379 0.377
Weighted 0.372 0.371 0.371 0.371

• scoring by computing inner products between all mod-
els and test i-vectors.

In our first series of experiments, we modify the base-
line system by replacing the PCA step (second bullet) with
our duration-weighted version of the PCA. We provide the
comparative results in terms of the minDCF values in Ta-
ble 1. Here, the last column denotes the relative change in
the minDCF value measured against the baseline:

minDCFrel =
minDCFbase −minDCFtest

minDCFbase
, (10)

where minDCFbase stands for the minDCF value of the
baseline system and minDCFtest stands for the minDCF
value achieved by the currently assessed system.

Note that the proposed weighting scheme results in a
relative improvement of 3.63% in the minDCF value over
the baseline. This result suggests that a performance im-
provement is possible with the proposed weighting scheme,
but a more detailed analysis of this results is still of in-
terest. For this reason we examine the behavior of the
baseline and weighted baseline techniques with respect to
a smaller development set, where i-vectors computed from
shorter recordings are excluded from the estimation of the
global mean and covariance. Based on this strategy, we
construct four distinct development sets with the first ex-
cluding all the i-vectors with the associated duration shorter
than 10s, the second excluding all the i-vectors with the as-
sociated duration shorter than 15s, the third excluding all
the i-vectors with the associated duration shorter than 20s,
and the last excluding all i-vectors with the associated du-
ration shorter than 25s. The baseline and weighted baseline
technique are then trained on the described development
sets. The results of this series of experiments are presented
in Table 2.

Note that by excluding vectors from the development
set, the baseline technique gradually improves in perfor-
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mance as more and more of the unreliable i-vectors are
excluded from training. Continuing this procedure would
clearly turn the trend around and the minDCF values would
start getting worse, as too much information would be dis-
carded. The weighted baseline system, on the other hand,
ensures minDCF values comparable to those that were
achieved when the entire development set was used for the
training. This result again suggests that duration variability
is addressed quite reasonably with the proposed weighting
scheme.

5.3. Experiments with WCCN
In the next series of experiments we assess the perfor-

mance of WCCN-based recognition systems. As a baseline
WCCN system, we implement a similar processing pipeline
as presented for the IVC baseline technique in the previ-
ous section, but add an additional step, which after whiten-
ing with PCA also whitens the within-class covariance ma-
trix using WCCN. All the remaining steps of our WCCN-
based baseline stay the same including length normaliza-
tion, model construction and scoring. Whenever using the
weighted version of WCCN we also use the weighted ver-
sion of PCA in the experiments.

To further improve upon the baseline, we implement
a second group of WCCN-based systems, where the
cosine-based scoring procedure is replaced with a logistic-
regression classifier and the length normalization is re-
moved from the processing pipeline. With this approach
all five target i-vectors of a given speaker are considered as
positive examples of one class, while 5,000 i-vectors most
similar to the given target speaker are considered as neg-
ative examples of the second class. Based on this setup a
binary classifier is trained for each target speaker, resulting
in a total of 1,306 classifiers for the entire IVC data.

Before we turn our attention to the experimental results,
it has to be noted that unlike PCA, which is an unsupervised
technique, WCCN represents a supervised feature transfor-
mation techniques, which requires that all i-vectors com-
prising the development data are labeled. Unfortunately,
the development data provided for the i-vector challenge is
not labeled nor is the number of speakers present in the data
known. To be able to apply supervised algorithms success-
fully we need to generate labels in an unsupervised manner
by applying an appropriate clustering algorithm (Senous-
saoui et al., 2014). Clustering will, however, never be per-
fect in practice, so the errors (utterances originated from
the same speaker can be attributed to different clusters or
utterances from different speakers can be attributed to the
same cluster) are inevitable. Although there exists some
evidence that labeling errors can degrade the recognition
performance (seen as a bending of the DET curve), it is
not completely obvious how sensitive different methods are
with respect to those errors.

Since the selection of an appropriate clustering tech-
nique is (clearly) crucial for the performance of the super-
vised feature transformation techniques, we first run a se-
ries of preliminary experiments with respect to clustering
and elaborate on our main findings. The basis for our ex-
periments is whitened i-vectors processed with the (PCA-
based) baseline IVC system. We experiment with different

Table 3: Effect of the proposed weighting scheme on our
WCCN-baseline system. The Table shows minDCF values
achieved by the baseline and weighted baseline WCCN sys-
tems as returned by the web-platform of the IVC as well as
the relative change (in%) in the minDCF value, achieved
with the weighting.

Technique Baseline Weighted minDCFrel

Cosine 0.461 0.447 3.04%
Logistic 0.304 0.294 3.29%

clustering techniques (i.e., k-means, hierarchical clustering,
spectral clustering, mean-shift clustering, k-medoids and
others), using different numbers of clusters and different
(dis-)similarity measures (i.e., Euclidian distances and co-
sine similarity measures). The results of our preliminary
experiments suggest the cosine similarity measure results
in i-vector labels that ensure better verification performance
than the labels generated by the Euclidian distance (with the
same number of clusters). Despite the fact that several al-
ternatives have been assessed, classical k-means clustering
ensures the best results in our experiments and was, there-
fore, chosen as the clustering algorithm for all of our main
experiments. Based on our preliminary experiments, we se-
lect the k-means clustering algorithm with the cosine simi-
larity measure for our experiments with WCCN and run it
on the development data. We set the number of clusters to
4,000, which also ensured the best results during our pre-
liminary experimentation.

The results of the WCCN-based series of experiments
are presented in Table 3. Here, the relative change in the
minDCF value is measured against the WCCN baseline.
The first thing to notice is that with cosine scoring the
WCCN-baseline systems (weighted and non-weighted) re-
sult in significantly worse minDCF values. However, when
the scoring procedure is replaced with a logistic-regression
classifier, this changes dramatically. In this situation, the
WCCN-based system becomes highly competitive and in
the case of the weighted system result in a minDCF value
of 0.294. All in all, the weighting scheme seems to en-
sure a consistent improvement over the non-weighted case
of around 3%. For the sake of completeness we need to
emphasize that the best score we managed to achieve with
a PCA-based system, when using a logistic-regression clas-
sifier was 0.326.

5.4. Comparative assessment

For the i-vector challenge we further tuned our best per-
forming recognition system (i.e., the weighted version of
our WCCN-system) to achieve even lower minDCF values.
After implementing several additional steps we managed to
reduce the minDCF value of our system to 0.280 by the
time of writing. Specifically, the following improvements
were implemented:

• duration was added as an additional feature to the i-
vectors to construct 601 dimensional vectors before
any processing,
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• the clustering was improved by excluding clusters
with a small fisher-score,

• the entire development set was used as negative exam-
ples when training the classifiers, and

• a second set of classifiers was trained on the test vec-
tors and then used to classify the target vectors; the
mean score over a given target speaker was then com-
bined with the score computed based on the classifier
trained on the target identity.

6. Conclusions
We have presented a duration-based weighting scheme

for feature transformation techniques used commonly in an
i-vector based speaker-recognition system. We have ap-
plied the scheme on two established transformation tech-
niques, namely, principal component analysis and within-
class covariance normalization. We have assessed the
duration-weighted techniques in the scope of the NIST i-
vectormachine learning challenge and achieved very com-
petitive results. As part of our future work, we plan to eval-
uate the possibility of using a similar scheme with proba-
bilistic linear discriminant analysis as well.
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perts for improved face verification performance. In Pro-
ceedings of the International Electrotechnical and Com-
puter Science Conference (ERK), pages 233–236, Por-
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