
Automatic word lemmatization

Dunja Mladenić

J.Stefan Institute, Ljubljana, Slovenia and
Carnegie Mellon University, Pittsburgh, USA

J.Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
Dunja.Mladenic@�ijs.si,cs.cmu.edu�

Abstract
This paper is addressing a problem of automatic word lemmatization using machine learning techniques. We illustrate a way that
sequential modeling can be used to improve the classification results, in particular to enable modeling sub-problems mostly having less
than 10 class values, instead of addressing all 156 class values in one problem. We independently induced two models for automatic
lemmatization of words using the complementary data representation modeled by using (1) a set of if-then classification rules and (2) the
naive Bayes classifier. The model induction was based on a set of hand labeled words of the form (word, lemma) and some unlabeled
data. We used data for Slovenian language as an example problem, but the approach can be applied to any natural language provided the
data is available. Actually, the labeled data we have used is a part of a larger dataset containing the same kind of information for different
European languages. The data representation was based on two independent feature sets describing the same examples. The first feature
set is using the letters in the words to give a structured representation of words on which a “classical” learning algorithm is applied.
In our case we used classification rules algorithm, that was shown to work well on different machine learning problems. The second
feature set is using the unlabeled data to get context of the words representing each example with a set of short documents - context.
Here we applied the Naive Bayesian classifier directly on text data, as an approach shown to work well in document classification. The
experimental results show that both approaches perform better than a simple, majority classifier.

1. Introduction
In text classification the goal of assigning class labels to

documents is often achieved by constructing features based
on some transformation of words, such as stemming, phrase
construction or expanding known abbreviations. For stem-
ming of English words, there are known algorithms giv-
ing approximation of the mapping from word to its stem,
eg. Porter’s stemmer (Porter, 1980). These approximations
have been reported to work well for the purpose of most
text classification problems involving stemming. However,
stemming words in other natural languages requires sepa-
rate consideration. In particular, there is no algorithm avail-
able for stemming Slovenian words and the same is true for
many other languages. The related research on learning En-
glish past tense addresses a subproblem of a general word
normalization problem addressed here. The additional dif-
ficulty of our problems is that we are dealing with highly
inflected natural language, having up to 30 different word
forms for the same normalized word. Some researchers
use decision trees or neural networks to predict separate
letters of the transformed word based on the letters in the
past tens form of the word (Ling, 1994). Some work using
relational learning wit decision lists was also proposed for
learning English past tense (Mooney and Califf, 1995) and
learning stemming (Dzeroski and Erjavec, 2000). Unsuper-
vised learning capturing different morphological transfor-
mations (Yarowsky, 1995) among others uses some hand
constructed rules for defining the context of a word and ad-
ditionally avoids labeling of the data.

2. Data description
The problem addressed in this paper is learning a map-

ping of words based on some labeled data defining the map-
ping and a set of unlabeled documents in the same natural

language. The mapping is from many to one, where we’re
mapping from up to 30 different forms of the same word to
the normalized form of the word. We illustrate the approach
on the problem of stemming words and define a mapping in
an indirect way as a transformation on a word suffix. This
transformation is from different forms of the same word to
the normalized form of the word (lemma). In this problem
presentation, the words with the same class value are the
words having the same suffix transformation and not the
words that have the same normalized form. For instance,
working, laughing, eating would be all assigned the class
value mapping from ing to an empty string. Notice that
in the original problem working is in the same class with
works, worked, work, as the words with the normalized
form work. However, the final result of our transfroma-
tion is the same. Using the both problem formulations as
two complementa view to the same problem, and combin-
ing their results is potential part of future work.

The goal here is to be able to apply the learned map-
ping on new text, and output the transformed text. One
of the direct applications of such system is in using it as
pre-processor of text for text classification or in search en-
gines. For example, stemming of words is especially valu-
able for text classification of document written in highly in-
flected natural language such as Slovenian, Check or Croa-
tian, where an average word has about 20 different forms.

The same labeled dataset was already used is some
experiments of learning stemming (Dzeroski and Erjavec,
2000). The whole dataset contains about 500 000 dif-
ferent words. For each word its normalized form is pro-
vided and additionally, the word is annotated by some
information about the word form such as singular/plural,
noun/verb/adjective, etc. Since our goal is to develop ap-
proach that can be used on any texts in the selected natu-

ral language and this additional information is not readily
available in the usual texts, we are not using this additional
information with learning the mapping.

We generated two complementary classifiation models,
one using classification rules on a “classical” feature repre-
sentation of examples and the other using Naive Bayesian
classifier on text representation (see Section 3.). The text
representaiton of a word is based on the context in which
the word usually occurs. The context was obtained from a
set of 28 novels (4Mb of text) known from Slovenian lit-
erature. Since our set of words contains all different in-
flections of the included lemmas, only about 15% of these
words were found in the used set of documents.

3. Approach Description
Learning a specific transformation of a word that is

needed to obtain its normalized form first requires repre-
senting the word in a form suitable for data mining. We
identified two sets of independent features: (1) letters in a
word itself and (2) context of a word from some set of doc-
uments. In this paper we describe experiments using each
of the feature sets independently. Combining them using
Co-training (Blum and Mitchell, 1998) is part of the future
work.

(1) We define the letter-based representation of word as
a set of features giving word suffix of a fixed length. In our
experiments, we used up to five last letters as a suffix. In
that way, each word is represented with five discrete fea-
tures.

(2) We defined a context of a word to contain a word and
up to six words in a window around the word (position��).
Each word is thus represented with a set of words collected
from all the contexts that the word appears in. As already
mentioed, only about 15% of the labeled words were found
in the set of unlabeled documents. For the remaining words,
we could not generate representation based on the word
context. Thus the experiments using the context features
were performed only on these 15% of the words. Testing
the approach using much larger set of unlabeled documents
is part of the future work. Namely, we plan to use a subset
of Slovenian corpus containing abut 40 000 Web documents
obtained in experiments for “automatic Web search query
generation to create minority language corpora” (Ghani et
al., 2001).

The class value is defined from word and the associ-
ated lemma by giving the transformation to be applied on
the word in order to get the lemma. The transformation is
given in the form of map X to Y (XToY), where X is a suffix
of the word and Y is a suffix of the lemma Since out class
value is strongly connected to the last letter of a word, we
applied a simple way of Sequential modeling (Even-Zohar
and Roth, 2001). Namely, instead of taking all the training
examples with 156 different class values, we generated a
one level decision tree that divided examples into subsets
depending on the last letter in the word represented by the
example. In this way we decomposed the problem into 26
independent problems, each having 1-40 class values (most
of the subproblems have less than 10 class values). Because
of the nature of the problem, the words that have different
last letter can share the class value only if that value is “do

not change the word” (in our notation value To) or “add
some suffix” (ToY). This means that with the applied se-
quential modeling the problem was divided into subprob-
lems with almost non-overlapping class values. The de-
composition of a problem according to the last word letter
reduced the number of class values inside each subprob-
lem and improved the classification results, as shown in
Section 6.. As shown in Table 6., the classification perfor-
mance on the letter-based word representation is improved
as well as on the context-based word representation for 5%
and 28% respectively.

4. Classification rules on the word suffix
We defined the problem of mapping different word

forms to its normalized form as a data mining problem and
applied classification rules for learning the mapping. The
algorithm we used in our experiments was developed in
ATRIS rule induction shell (Mladenic, 1993). The algo-
rithm is based on local optimization and adopts the cover-
ing paradigm as follows:

Hypothesis := �;
for each class do

PExs := positive training examples;
NExs := negative training examples;
repeat

Rule := new rule induced from PExs and NExs;
�where induction is performed by a combinatorial
optimization algorithm�

Hypothesis := Hypothesis
�

Rule;
From PExs delete examples covered by Rule;

until PExs = � (or some other stopping criterion is
satisfied);

end for
output Hypothesis;

The covering algorithm loop is controlled by a stopping
criterion, used to decide when to stop the induction of rules
for the current class. This criterion can be referred to as
the sufficiency criterion. Combinatorial optimization algo-
rithms contain a stopping criterion, usually referred to as
the necessity criterion, if it is a part of the heuristic func-
tion that is used to guide the search. In domains with exact
and non-noisy data, the sufficiency criterion requires com-
pleteness (coverage of all positive examples) and the ne-
cessity criterion requires consistency (no covered negative
example). In domains with imperfect data, the two criteria
are implemented as heuristics for evaluating the expected
classification accuracy, aimed at avoiding overly specific
hypotheses. In our experiments the sufficiency criterion is
a combination of three parameters: coverage of all but Mx-
UncoveredExs number of positive examples, the num-
ber of unsuccessful runs of optimization algorithm (each
starting with the different initial rule set randomly) and the
maximum number of rules per class. The necessity crite-
rion used to stop the rule refinement is based on finding
any changes of a rule that would improve its quality. We
maximize rule quality, that is here defined as the rule ac-
curacy estimated using �-estimate (Cestnik and Bratko,
1991) (� � ��) of probability that the example covered
by the rule has the same class value as predicted by the
rule. In case of the same accuracy rules, the rule simplic-
ity is considered, where the simpler rules are preferred. We

define rule simplicity as the number of literals in the rule
either including a new feature or adding a new value to the
already included feature.

A single rule is a conjunction of selectors, where a se-
lector relates a feature to a value or a disjunction (so-called
internal disjunction) of values. A conjunction of selectors
forms a complex:

�� �
�
�

�
�� �

�
�

���

�

Where�� stands for the �-th complex,�� for the �-th feature
and ��� for the �-th value of the �-th feature. A hypothesis
is a set of if-then rules of the form if Complex then Class.
An example rule is the following: if [ThreeLastCh= HOM
� NOM � DOM � SOM � POM � BOM � FOM � XOM]
then Trnasformation = OMTo (Quality = 0.8280).

Deterministic search algorithms named k-Opt originally
proposed in combinatorial optimization for traveling sales-
man problems (Syslo et al., 1983), can be modified for the
purpose of a single rule optimization as listed below. The
transformation used in these algorithms for ‘moving’ in the
candidate solution space is the modification (negation) of
1, 2, . . . , k, randomly chosen bits in a binary vector rep-
resenting a rule. This internal rule representation enables
efficient evaluation of the rule, where each attribute value
is represented with a bit (set to 1 if the value occurs in the
complex).

������� ���� := random rule; �random binary vector�
repeat

Find one (or two) values in the rule binary vector,
modification of which maximizes the quality of the
rule (i.e., no other modification of one (or two) val-
ues provides a rule with better quality);
if �	
����
 ���� is of better quality than
������� ���� then
������� ���� := �	
����
 ����;

end if
until no modification to better rule quality is possible;
output ������� ����;

The above algorithm is called 1-Opt if (in the first step of
repeat-until loop) it checks only rules with one modified
value while 2-Opt checks rules with one or two values mod-
ified in a single search step. In general k-Opt can be per-
formed by checking rules with up to k values modified. We
used the greedy variant of 2-Opt algorithm that at each step
searches for the first modification that provides a rule with
better quality. Figure 1 shows the optimization progress for
three out of the fourteen rules generated for the first class
value.

Figure 1: Rule refinement through the iterations of the op-
timization algorithm in one of the 5-fold cross-validation
splits for the problem with 156 class values. As illustra-
tion, we show three out of the 14 rules generated in order
to cover examples with the first class value. AllExs and
PosExs show (on the left y-aix) the numebr of examples
covered by the rule, all examples and positive examples re-
spectivey. RuleQuality is �-estimate of the rule accuracy
and RuleAccuracy is the rule accuracy estimated simply by
dividing number of positive examples covered by the num-
ber of all covered examples. It can be seen that the first
rules cover larger number of positive examples, while the
later rules are left with the problem of covering the remain-
ing, usually small number of uncovered positive examples.

5. Naive Bayes on the word context
Nave Bayesian classifier have been shown to work well

on a number of text classification problems despite the used
word independence assumption. Our experiments are per-
formed using the Naive Bayesian classifier base on the
multinomial event model as outlined in (McCallum and
Nigam, 1998). Notice that the product goes over all words
that occur in the representation of the testing document
�	
.

� ����	
� �
� ����������� �� ���

�	 ���
����

�
� � ������������ �������	 ���
����

Where � �� ��� is the conditional probability here
estimated using the Laplace probability estimate,
�� �� � �	
� is the frequency of word � in docu-
ment �	
. The calculation is illustrated on classification
of word ADAMOM in Figure 5..

Context-based word representation can be very short,
containing just a couple of words, but this depends on the
goodness of the match between the labeled and unlabeled
data. Namely, this will not be the case if the unlabeled data
contains several occurrences of the labeled words. Nev-
ertheless, using the Naive Bayesian classifier on relatively
short documents is problematic, since there is not enough
evidence for classifying testing examples. In order to pre-
serve information about inflection, we use all the words
without changing them (no stop-list or stemming in ap-
plied). In many cases, very few or none of the words from
a testing example is found in the training examples, and
when the word is found in the training examples it may
be distributed over examples having different class values.
The relatively low number of different words for each class
value contributes to unreliable probability estimates used in
the classification.

Figure 5. shows how the probability estimate for the
correct example class (cut the ending “om”) is calculated
using the Naive Bayesian classifier. This class value has the
prior probability �����	, the calculated posterior probabil-
ity estimate is ��
�	
� and it is based on the 3 words from
the testing document with �� ��� ��� � �. The three
words are very common words, namely "je, z, in"
that are Slovenian for "is, with, and". Classes that
do not share any words (��������� ��� �� � �) with
the testing document are ignored in the final classification.

6. Experimental Results
Experiments are performed on two sets of independent

features: (1) letters in a word and (2) context of a word
(see Section 3.). We report results of classification accu-
racy from 5-fold cross-validation, where exactly the same
examples, but represented in a different way, were used for
generating and testing the model. We used a subset of the
whole labeled data set containing 3970 examples that were
split randomly in 5 folders, each having 294 examples. The
whole training-testing loop was repeated five times, with
each of the five subsets being excluded from training and
used as testing exactly once (cross-validation). We repeated
the experiments on a subset of a double size having about
8000 examples, and the variation in the performance was
small.

In addition to comparing the performance of the two
independent representations, we also tested the hypothesis
that using sequential modeling in a very simple way im-
proves the performance. We generated a one-level decision
tree that divided examples into subsets based on the last let-
ter in the word. In this way, we decomposed the problem
into 26 independent problems. Since many testing exam-
ples are short, it may happen that the Naive Bayes classifier
has no information except the prior probability of the class
values. Thus, we are reporting average accuracy only on
the examples for which at least one word from our vocab-
ulary of 11086 words had �� ���� � � for at least one
of the class values. In this way about 15% of all testing
examples were classified and the reported accuracy is on
that 15% of examples. This evaluation is consistent with
the classifiers needed for co-training approach, where we
actually consider for labelling only the unlabeled examples
for which the prediction is the most certain. The results of
experiments are given in Table 6..

6.1. Discussion

A simple sequential modeling we used is actually based
on one of the features from the letter-based example rep-
resentation, namely feature LastCh. This is also why we
can observe a small improvement of the performance in the
letter-based representation experiments, since the same in-
formation was also made available to the classification rules
generation algorithm as one of the five features. However,
the information about the last letter of a word was a new
and very useful for the complementary, context-based rep-
resentation. We can see that from the experimental results,
where sequential modeling almost doubled the classifica-
tion accuracy of the context-based representation perfor-
mance. It should be pointed out that the default classifier
assigning the majority class value had the largest improve-
ment in the performance due to sequential modeling, from
12% to 40.8% average accuracy.

Our definition of class value as a transformation of the
word suffix resulted in some class values having very small
number of example, that is additionally reduced by employ-
ing cross-validation. In our experiments using the letter-
based representation, that small classes were ignored as
noise meaning that no rules were generated for them. We
tested omitting this pruning of rules and observed a very
small variation in the average classification accuracy (it de-
creased from 74.2% � 4.9 to 73.2% � 1.4). Notice the
change in the standard deviation from 4.9 when the small
classes where ignored, to 1.4 when for all class values the
set of rules was generated, even for only one positive ex-
ample.

Our experiment using context-based representation
were performed on about 15% of the labeled words that
were present in the set of unlabeled documents and we were
able to generate a context-based representation for them.
We also tested ignoring that and testing on all the words,
meaning that 85% of the words were classified based only
on the word itself. The classification accuracy achieved us-
ing the sequential modeling approach decreased from 50.2
� 2.1% to 21.8 � 2.1%

Context-based representation of words had several rea-

(a)
CatWgt[5]=(6.000+1)/(467.000+11086), log CatWgt[5]=-7.40879
CatWgt[5]=(0.000+1)/(467.000+11086), log CatWgt.Key[5]=-16.76349
CatWgt[5]=(47.000+1)/(467.000+11086), log CatWgt.Key[5]=-22.24699
CatWgt[5]=(0.000+1)/(467.000+11086), log CatWgt.Key[5]=-31.60169
CatWgt[5]=(18.000+1)/(467.000+11086), log CatWgt.Key[5]=-38.01195
CatWgt[5]=(0.000+1)/(467.000+11086), log CatWgt.Key[5]=-47.36665

(b)
Document vector: JE BILO Z ADAMOM IN EVO
correct --> predicted
[5:OMTo_] --> [5:OMTo_]:0.94598

Model evidence:TF(JE)=6.0 TF(Z)=47.0 TF(IN)=18.0

Figure 2: (a)Illustration of the Laplace probability estimate calculation in the loop of Naive Bayes classification, looping over all
words from the testing document ������ � ��� ���� �� � �������� ��� � �� � ��	�
��. Here we are showing the value of
each part separately and give the natural logarithm of the calculated value. We used logarithm in the calculation, because the product
of probabilities in the loop is usually some very small number that may cause numerical errors in the computation. (b) Class value
5:[OMTo] shares three words with the testing document. All three words are functional words that can also occur in some other
ordering or other context of a word having different class value. This shows that even tough this particular classification is correct it is
not very robust and reliable.

Classification accuracy [%] Original problem Sequential modeling
(1) Letter-based representation
using classification rules 69.4 � 2.1 74.2 � 4.9
(2) Context-based representation
using Naive Bayes 22.4 � 2.8 50.2 � 2.1
Majority classifier 12.0 � 2.1 40.8 � 2.1

Table 1: Experimental comparison of letter-based and context-based word representation used for the problem of word classification
with the goal to transform the word into its normalized form. For each representation we also show the influence of using sequential
modeling, where we can observe improvement of average classification accuracy of about 5% and 28% for letter-based and context-based
representation respectively. We report average classification accuracy and standard deviation on 5-fold cross validation experiments and
compare the results with the default classifier assigning the majority class value.

sons for making errors in prediction. One is the small num-
ber of words in the representation of some examples, which
resulted in unreliable model as well as predictions based
on only a couple of words. Figure 6.1. illustrate the prob-
lem of a testing document “sharing with the class values
model” none or only small number of words. This means
that, since for all other words � from the testing docu-
ment �� ��� �� � �, the classification is based only on a
limited evidence. We show some examples where the clas-
sification was not correct. The first example illustrates how
two words from different class value having similar con-
text can have negative influence on the classification results.
Namely, the testing example contains two personal names
“Cankarjem” and “Presernom”. They are both “instrumen-
tal case” but have different suffix. Thus, the personal name
”Cankarjem” should be replaced by ”Cankar” where the
correct mapping is cutting off the ending ”jem” and not
cutting off the ending ”om” as predicated. However, the
predicted transformation is correct if the same context doc-
ument is formed for mapping the other personal name ”Pre-
sernom”, which should be mapped to ”Presern”. This ex-
ample also illustrates potential problem of using the con-
text words as feature values, since the same or very similar
context can belong to different class values. A typical ex-

ample is when two words having different class value tend
to occur close to each other in the texts and thus have sim-
ilar context. In case when the two words have different
last letter, it helps to use the proposed sequential model-
ing resulting in decomposition of the problem into a set of
subproblems based on the last letter of the word.

We expect that using a larger set of unlabeled data with
better overlap with the labelled words will produce more
reliable probability estimates. Having a larger number of
context for the same word should also help with the second
problem, since in general, it is not likely that two words
will repeat appearing together in different documents (un-
less they represent some kind of a phrase).

7. Conclusions and Future Work

We have described an approach to word classification
which adopts a simple sequential modeling to obtain a set
of simpler problems. These new problems mostly have up
to 10 class values, instead of 156 class values that we have
in the original problem. Our experiments show that this re-
sulted in an improvement of classification accuracy of 5%
and 28% on the two independent example representations
we used. The baseline classifier we used assigns the major-
ity class values to all examples. Its performance improved

(a)
Document vector: BILO SE S SEM TRDINO PRESERNOM CANKARJEM
[51:JEMTo_] --> [5:OMTo_]:0.79520

Model evidence:TF(SE)=7.0 TF(S)=4.0 TF(SEM)=2.0

(b)
Document vector: NI STORIL GORENJCEM PREZIR
[43:CEMToEC] --> [22:MTo_]:0.54037

Model evidence: TF(NI)=2.0
(c)
Document vector: V V V V V V V V JE IN NAJ NA NA TUDI SO NI SLA DA DA STA ROVAN

NEKAJ GRE DRUGEGA HVALO POJE PRECEJ SAMEGA ODSEL KONCU PAPEZA RIM RIM RIM RIM RI
M RIM RIM RIM RIM RIM SIBKIH ROMANJE RIHARJU KOGA CYRIACUS

[20:_ToA] --> [22:MTo_]:0.96590
Model evidence:TF(V)=3.0 TF(JE)=11.0 TF(IN)=7.0 TF(NA)=49.0

TF(TUDI)=2.0 TF(SO)=3.0 TF(NI)=2.0 TF(DA)=2.0

Figure 3: Illustration of classification errors. (a) Two words having different class values appear together in the testing example: personal
names: PRESERNOM, CANKARJEM. The predicted classification is correct for one of them, in this case not the one that was used to
collect its context. (b) Prediction based on very little model evidence is not very reliable, as in case when only one word from the testing
example is used. The word for which we are predicting transformation here is GORENJCEM. The proposed transformation actually
gives a valid (but not normalized) word which is a noun in accusative, plural (instead of a normalized variant, which is nominative,
singular) (c) More words in the representation of the testing document do not necessary lead to correct prediction, especially if we are
dealing mainly with functional words. Moreover the proposed transformation is not applicable to the word, since the words ends with
“A” while the transformation calls for cutting off “M”. The word for which we are predicting transformation here is PAPEZA (Pope). .

from 12% to 40.8% due to the usage of sequential model-
ing.

We propose two independent feature sets, one based on
the word letters and the other based on the context of the
word in unlabeled documents. The letter-based word rep-
resentation achieved better results than the context-based
representation. We expect that some of the problems we
observed with the context will be solved by using a larger
set of unlabeled documents containing the words from our
labeled data with higher frequency.

Nevertheless, the two independent features sets moti-
vate future work on combining them using co-training. It is
also interesting to investigate the potential of using a similar
approach combining “classical” feature-based and context-
based representation on other related problems, such as ab-
breviations resolution or phrases mapping.

Using unlabeled data for post-processing the classifica-
tion results is also an interesting direction for future work.
We can apply additional scoring on the predicted class val-
ues based on our believe that the transformed word is a valid
word in the addressed natural language. Namely, we know
that our mapping should produce valid words in the same
language (a normalized word is a valid word itself) and we
can check if the transformed words appear in the unlabeled
texts. One possibility is that we have a dictionary with all
normalized words from the language. In that case we can
use it not only for checking if the word is valid but also
to get some alternative classifiers by combining the super-
vised learning using our labeled data with the unsupervised
learning similar to what is proposed in (Yarowsky, 1995)
for getting morphological transformations. The other pos-
sibility is to just get some texts in the same language and
use them to check the result of each testing example clas-

sification. In that case, we do not have a complete set of
all possible normalized words but we have a large set of
valid words that hopefully contains many of the normalized
words as well.

8. References
Blum in Mitchell. 1998. Combining labeled and unla-

beled data with co-training. V: COLT: Proceedings of
the Workshop on Computational Learning Theory, Mor-
gan Kaufmann Publishers.

B. Cestnik in I. Bratko. 1991. On estimating probabilities
in tree pruning. V: Y. Kodratoff, ur., Proc. Fifth Euro-
pean Working Session on Learning, str. 151–163, Berlin.
Springer.

Saso Dzeroski in Tomaz Erjavec. 2000. Learning to
lemmatise slovene words. V: Learning language in
logic, (Lecture notes in computer science, J.Cussens and
S.Dzeroski (eds)), str. 69–88.

Yair Even-Zohar in Dan Roth. 2001. A sequential model
for multi-class classification. V: Proc. of Conference
on Empirical Methods in Natural Language Processing
(EMNLP 2001).

Rayid Ghani, Rosie Jones, in Dunja Mladenic. 2001. Au-
tomatic web search query generation to create minority
language corpora. V: Proceedings of the Sixteenth An-
nual International ACM SIGIR Conference on Research
and Development in Information Retrieval.

C. X. Ling. 1994. Learning the past tense of English verbs:
The symbolic pattern associator vs. connectionist mod-
els. Journal of Artificial Intelligence Research, 1:209–
229.

A. McCallum in K. Nigam. 1998. A comparison of event

models for naive bayes text classifiers. V: AAAI-98
Workshop on Learning for Text Categorization.

Dunja Mladenic. 1993. Combinatorial optimization in in-
ductive concept learning. V: Proc. 10th Int. Conf. on Ma-
chine Learning, Morgan Kaufmann, str. 205–211.

R.J. Mooney in M.E. Califf. 1995. Induction of first-order
decision lists: Results on learning the past tense of en-
glish verbs. V: L. De Raedt, ur., Proceedings of the
5th International Workshop on Inductive Logic Program-
ming, str. 145–146. Department of Computer Science,
Katholieke Universiteit Leuven.

M.F. Porter. 1980. An algorithm for suffix stripping. V: In
ACM SIGIR Conference on Research and Development
in Information Retrieval, str. 318–327.

M.M. Syslo, N. Deo, in J.S. Kowalik. 1983. Local search
heuristics. Prentice-Hall. Inc. Englewood Cliffs.

David Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. V: Meeting of the
Association for Computational Linguistics, str. 189–196.

