
1

Introduction to Human
Language Technologies

Tomaž Erjavec

Karl-Franzens-Universität Graz

Lecture: Character sets
11.1.2008

Overview

1. Basic concepts
2. ASCII
3. 8-bit character sets
4. Unicode
5. Python

Computer coding of characters

• Computers store data as (binary) numbers
• There is no a priori relationship between these

numbers and characters (of an alphabet)
• If there are no conventions for mapping numbers

to characters, or there are too many conventions
--> chaos

• Standards and quasi standards:
ASCII, ISO 8859, (Windows, Mac), Unicode

2

Basic concepts I.
• a character

– an abstract concept
(An „A“ is something like a Platonic entity: it is the
idea of an „A“ and not the „A“ itself)

– of itself a character does not have a mapping to a
number of a concrete visual representation

– so, characters are usu. defined descriptively, e.g.
„Greek small letter alpha“; the graphical
representation is given only as an examplar, „α“

Basic concepts II.

• character repertoire or coded character set
– a set of characters
– each character is associated with a number (a character code)
– identical characters can belong to different characters sets if

they are logicaly distinct, e.g. capital letter A in the Latin
alphabet, in the Cyrillic alphabet, capital alpha in Greek

• character code (codepoint)
– a 1-1 relation between the character from a character set and a

number e.g.
A = 26, B = 27, ...

Basic Concepts III.

• character encoding
– an algorithm, which translates the character

code into a concerete digital encoding, in
bytes

• byte / octet
– the minimal unit that is processed by a

computer
– typically 8 bits (0/1) : 0-255

3

Basic concepts IV
• glyph

– the graphical representation of a character
– a character can have several glyphs: A, A, A
– sometimes one glyph can have several characters, e.g. the

glyph “P” corresponds to the Latin letter P, the Cyrillic letter Er or
Greek Rho

• font
– the graphical representations of a set of characters for some

character repertoire (coded character set):
A, B, C, Č, D, …

ASCII

• American Standard Code for Information
Interchange (1950')

• a 7-bit character set: range from 0-127
• 0-31 - control codes and formatting:

Escape, Line Feed, Tab, Space,...
• 32-126 – punctuation etc., numbers, lc and English

letters :
! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W
X Y Z [\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v
w x y z { | } ~

• Oxymoron: ‘8-bit ASCII’

ASCII II.

• Advantages:
– no chaos:

one character - one codepoint (number)
– trivial character encoding algorithm:

one codepoint - one byte
• Weakness:

– does not support non-English characters

4

8-bit character sets I.

• In ASCII one bit in byte was left unused
• so, ½ numbers (128-255) not assigned characters
• The need for extra characters:

– in the 80‘s many new character sets appeared
– ASCII always a subset
– make use of the 8th bit in a byte

• ISO publishes character sets for families of European
languages – the ISO 8859 familily of standards

• ISO 8859-1 (ISO Latin 1)
– Western European languages

¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ - ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å
Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä å æ
ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

8-bit character sets II.

• for Slovene and other Central and
Eastern European languages -
anarchy:
– ISO 8859-2 (ISO Latin 2)
– Windows-1250 (grrr!)
– others: Apple, IBM
– …

8-bit character sets III.
• Advantages:

– can write characters of national language alphabets (e.g.
German, Slovene, Bulgarian, Greek)

– simplicity: one character still codes to one byte
• Weakness::

– chaos because of the large number of character sets for many
languages

– multilingal texts cannot be written in the same character set
– no provisions for Far-eastern languages or for more

sophisticated characters
– the file does a priory contain information in which character set

it is written in:
© Global publishing ~ Ž Global publishing
• --> there is no such thing as “plain text”!!

5

Unicode I.
• If we want to extend the character set, the only solution is to

code one character in several bytes

• 1991 – Unicode Consortium: http://www.unicode.org/
• ISO 10646 Unicode

– defines the universal character set
– defines 30 alphabets covering several hundred languages, cca

40.000 characterov
– …CJK, Arabic, Sanskrt,…
– historical alphabets, punctuation, math symbols, diacritics, …
– A character definition in Unicode:

„LATIN CAPITAL LETTER A WITH ACUTE“

Unicode definitions for IPA

Unicode II.

• 1 character ≠ 1 bye, what now?
• for Unicode, several character encodings exist:

– UTF-32
• 1 character – 4 bytes

– UTF-16
• if BMP character (Basic Multilingual Plane)

1 character – 2 bytes
• otherwise

1 character – 4 bytes
– UTF-8

• varying length: 1-6 bytes for character
• if character in ASCII then one byte (compatibility)
• most European characters code in two bytes

6

Unicode III.

• diactrics exists as zero width characters
(combining diacritical marks)

• e.g. a + ̂ + ̤ = a ̤̂
• but problems with displaying complex

combinations,
• e.g. a + ̂ + ˚ = a ̊̂

Back to ASCII

ASCII is sometimes still the only safe encoding:
– how to keyboard complex characters
– how to transfer text (e-mail, www)

Re-coding to ASCII:
e-mail - MIME standard
WWW - Unidoce character entities, e.g.
š (= Š) = š

Conversion between character
sets

• Linux:
iconv –f windows-1250 –t utf8 text-win > text-utf8

• Windows:
– charmap
– MS Word / Save as

7

Python

• Python documentation:
3.1.3 Unicode Strings

• ASCII string: 'Hello World !'
• Unicode string: u'Hello World !'
• Use of Unicode codepoint:

u'Hello\u0020World !'
• >>> print u'Toma\u017E Erjavec‘

Tomaž Erjavec

Coding and decoding

Converting Unicode strings into 8 bit
encodings and back is done with CODECs

>>> u"Toma\u017e Erjavec".encode('utf-8')
'Toma\xc5\xbe Erjavec‘

>>> 'Toma\xc5\xbe Erjavec'.decode('utf-8')
u'Toma\u017e Erjavec‘

Use of other character sets
>>> u"Toma\u017E Erjavec".encode('iso-8859-2')

'Toma\xbe Erjavec'
>>> u"Toma\u017E Erjavec".encode('iso-8859-1')

Traceback (most recent call last):
UnicodeEncodeError: 'latin-1' codec can't encode
character u'\u017e' in position 4: ordinal not in
range(256)

8

References
• Well written intro:

http://www.joelonsoftware.com/articles/Unicode.
html

• Good intro to character sets:
http://www.cs.tut.fi/~jkorpela/chars.html

• Official Unicode site:
http://www.unicode.org

• Python Unicode Objects:
http://effbot.org/zone/unicode-objects.htm

