
The Taming of a Dialect: Interlinear
Glossing of Swiss German Text

Messages

Beni Ruef1, Simone Ueberwasser2

Romanisches Seminar1,

Deutsches Seminar2

University of Zurich

Abstract

The Swiss German dialects (SGD) have no fixed orthography. Fur-
thermore, text messages contain a lot of abbreviations and forms of
code-switching. To enable corpus search and the application of com-
putational linguistic methods, the Swiss SMS corpus was normalized
by means of interlinear glossing. This paper describes the tool de-
veloped for this task and the practical experiences gained.

1 Working with dialectal data
Until a few years ago, the written use of SGD1 was limited to local poetry
and literature. There has never been a standardized spelling system for this
variety, not least because the individual dialects in the different regions
are very heterogeneous. Since the rise of the new media, however, SGD
has found its way into written communication, albeit for conversations of
an informal nature. In spite of this frequent use of the dialect, there are

1More information about the SGD and the need for standardization can be found in
Ueberwasser in this volume.

iMac
Typewritten Text
Ruef, Beni; Ueberwasser, Simone (2013): The Taming of a Dialect: Interlinear Glossing of Swiss German Text Messages. In: Zampieri, Marcos; Diwersy, Sascha (Hrsg.): Non-standard Data Sources in Corpus-based Research. (=ZSM-Studien, Schriften des Zentrums Sprachenvielfalt und Mehrsprachigkeit der Universität zu Köln 5. Hrsg: Bongratz, Christiane M.; Riehl, Claudia M.). Aachen: Shaker, 61-68.



still no spelling norms, a fact causing major difficulties when creating or
working with linguistic corpora. The written SGD is in fact a beast to be
tamed. In this paper, we will show some steps taken by the Swiss SMS
team (cf. www.sms4science.ch as well as [3]). towards this aim. In the
second section, we will give an introduction to glossing and elucidate why
we developed our own tool for the task at hand. Sections three and four
will introduce the functionality and technology, respectively. In the last
two sections, we will share our experiences and conclusions.

2 The need for a tool of our own
The Swiss SMS team was not the first one with a need for interlinear
glossing. In fact, the approach of a sub- or superscripting word by word
translation—thus the term interlinear glossing—can already be found in
medieval texts, where individual Latin tokens were translated into the ver-
nacular in this way. This glossing does not result in syntactically correct
texts in the vernacular and thus cannot be used for all types of linguis-
tic studies. However, it is still a valuable mean to trace individual word
forms, to aggregate spelling variants etc. We invert this procedure, i.e. we
take non-standardized spelling forms and apply an interlinear glossing in a
standardized variety. Since this is a well-known approach to non-standard
language, various freely available software tools can be found. In the fol-
lowing, we will briefly explain why two of the best known of them, ITE
(cf. michel.jacobson.free.fr/ITE/) and VARD2 (cf. www.comp.lancs.ac.
uk/~barona/vard2 and [1]), did not fulfill our specific requirements.

These requirements can mainly be traced back to the sheer amount of
more than 10,000 SMS which had to be annotated, and to the complex-
ity of the data. The latter resulted in the need for a user interface which
allowed to see both the original and the glossed level at the same time
so as to compare the two versions of the complete SMS (not possible in
VARD2). Furthermore, the option of adding a gloss only was not sufficient
since metadata had to be added, too (not possible in VARD2 and tedious
in ITE), as will be shown in section 3. The amount of data, on the other
hand, asked for a workflow which allowed for fast processing, such as by



suggesting glosses or by allowing the original token to be copied into the
gloss with one click (not possible neither in VARD2 nor in ITE).

With some restrictions, the two tools mentioned above could both have
been configured to fulfill some of these needs in one way or another. How-
ever, in the project we had the need to divide the work on several people
to have the job done faster, a requirement which asks for a server-based
solution. Neither of the existing tools offers this option. The focus here
is not on being able to work on the same messages at the same time but
on writing the glosses and their dialectal counterparts back to a common
vocabulary list. This list is then used to produce suggestions for glosses
to the whole team, a procedure which both helps in cases of doubt and
speeds up the workflow. The next section will explain the functionality of
this approach.

3 Functionality
The user interface of the SMS Glossing Tool (SGT) is comprised of sev-
eral windows which reflect the three main tasks at hand: 1) the overview
panel displaying the messages to gloss and their status2, 2) the detail panel
showing the selected SMS, and 3) the glossing panel with the tokenized
SMS to be glossed (cf. Figure 1).

In the detail panel the editor can manually change the SMS’ status
to one needing attention (needs retokenizing, marked for inspection) and
add a note describing the problem at hand. To speed up the workflow,
messages which are completely glossed and contain no note will change
their status automatically to completed when the next SMS is selected.

The main work is done in the glossing panel which is arranged in five
rows and as many columns as the SMS contains tokens. The first row
(Message) contains the original SGD SMS and the second one (Gloss) the
interlinear gloss in Standard German. The latter starts empty except for
the tokens which are copied as is (punctuation, emoticons, numbers, and
spotted names as identified by prior tokenization and anonymization of

2The SMS were glossed in batches containing 250 messages each.



Figure 1: SGT user interface

names). The third row (PoS) indicates the part of speech, likewise iden-
tified by tokenization and anonymization of names. Code-switching on a
token level is annotated in the fourth row (Lang), which also starts empty.
The fifth row (Attrs) shows the attributes of a token which we consider
interesting for further linguistic examination (cf. below); besides abbrevi-
ation (recognized by the tokenizer) this row also starts empty.

Clicking into a gloss’ cell opens a menu (cf. Figure 1) which was de-
signed with efficiency in mind. On top a gloss can be selected from a list
of suggestions drawn from the vocabulary. In many cases the gloss is ho-
mograph to the SGD token and can be copied using one of the next three
menu items. If the gloss to be added is neither in the list nor homograph, a



new gloss can be added. Erroneous glosses can be corrected by means of
the next menu item. The remaining menu items allow adding metadata to
a token. Firstly, the language of a nonce borrowing can be selected from a
submenu. Additionally, the following boolean attributes can be added by
the checkboxes below: abbreviation, pet name, onomatopoeia, recurring
verb3, missing anonymization, and unclear.

The vocabulary (i.e. the list of SGD tokens and their possible glosses)
starts empty and grows progressively with each new gloss added. Any
modification of the vocabulary is synchronized with the server, thus mak-
ing new glosses available to the other editors immediately. The ever-
expanding vocabulary fulfills two functions at the same time: it speeds
up the process and it helps to increase consistency.

4 Architecture and technology
As outlined in section 2 we chose a server-based solution, or more pre-
cisely, a client-server architecture. Furthermore, we went for a web-based
solution to manage without any software installation on the client’s part.
Virtually all application logic—after having been loaded from the server—
is executed on the client side, the server—besides providing persistent data
storage—is only in charge of vocabulary synchronization (cf. above).

The client side is implemented in JavaScript, using the ExtJS frame-
work4 whereas the server part is realized in Perl. The SMS data is stored
in two XML files, one for the original messages and their metadata (sta-
tus, notes etc.), and one for the tokenized messages, their glosses, and
the metadata on the token level. The vocabulary is stored as a JSON [2]
object where the SGD tokens themselves are the keys to arrays of possi-
ble glosses. The JSON format results in zero storage overhead and thus
minimal download time when synchronizing the vocabulary while simul-
taneously allowing for extremely fast lookups.

3A reduplication of specific verbs, (mostly gehen ‘to go’, kommen ‘to come’, and lassen
‘to let’), which is often compulsory in the SGD but unknown in the standard language.

4http://www.sencha.com/products/extjs



When the editor starts a new browser session the two XML data files
are fetched from the server and used to initialize two corresponding DOM
objects. All manipulation of the SMS and their tokens (adding a note,
adding a gloss, setting an attribute etc.) results in updating one or both
of the DOM objects. When the Sync with Server button is hit the two
DOM objects—if altered at all—are serialized to XML again and saved
on the server by means of an (asynchronous) XMLHttpRequest (XHR)
using the PUT method. The vocabulary is synchronized whenever the
editor switches from one SMS to another.

For post-processing (cf. section 5) the XML data files were stored
in an XML database (BaseX5) where they were queried and modified by
XPath 2.0 [4] and XQuery Update [5], respectively.

5 Post-processing
The more than 10,000 messages were glossed over a period of seven
months. During this time the guidelines and specific rules for normal-
ization were constantly improved based on the linguistic data encountered
and the know-how accumulated so far. In addition, the tokenizer—which
is crucial for the task of interlinear glossing—was continuously enhanced,
e.g. because of emoticons not known in advance. Both phenomena cause
a typical ‘moving target’ situation where all the changes must be recorded
such that the resulting inconsistencies can be taken care of afterwards.

Tokenization errors following a regular pattern were corrected with
XQuery Update. In the case of emoticons this can be done automati-
cally. Some abbreviations6 however need manual intervention as shall
be demonstrated with an example: The two tokens Fr (or fr) followed by
‹.› always stand for an abbreviation, i.e. they must be retokenized to one
single token Fr. (or fr.) and the abbreviation attribute must be set to true.
The corresponding gloss, though, is ambiguous: Fr. can stand for either
Franken, Frau, or Freitag.

5http://basex.org
6Most abbreviations used in the corpus were not known from the beginning and had to be

retokenized in the post-processing step.



The correction of glossing inconsistencies caused by changing nor-
malization rules is a similar case: Inconsistencies can quickly be pin-
pointed by means of XPath or XQuery queries, but their correction of-
ten involves manual work, too, mostly because of inflection, i.e. diverse
inflected forms.

The systematic examination of all messages having the status needs re-
tokenizing or marked for inspection not only revealed tokenization errors
but also helped to detect other problems and inconsistencies as well, espe-
cially erroneous language taggings on the SMS level7. In a parallel quality
assurance effort all tokens with the attribute missing anonymization were
scrutinized, resulting in a large improvement of the corpus’ anonymiza-
tion. All the manual work listed above, be it control or correction, caused
an enormous workload after the initial glossing process. Five editors were
engaged in the glossing, spending an average 3.5 minutes per SMS8. Man-
ual control and correction took up just as much time. The original editors
working in the project had support from three different sides: a) the afore-
mentioned vocabulary which suggested glosses, b) an extensive documen-
tation which described the procedure in general linguistic terms, contained
specific rules and also quoted many individual word forms, and c) an on-
line forum in which the editors discussed problems among themselves. In
spite of these tools, problems were frequent but will be shown on only
one example in the following. The instruction was to stick as closely as
possible to the dialectal form of a token and to consider any form as valid
which can be found in at least one dictionary, even if marked as colloquial
or substandard there. Such a tolerant stand towards the Swiss Standard
variety clashes strongly with the teaching at basic schools where the stan-
dard variety, as it is used in Germany, is still seen as superior to the Swiss
one. Thus, despite the instructions, the editors nevertheless often followed
their instincts instead, resulting e.g. in glossing the verb to move as the
German form umziehen instead of the Swiss form zügeln, notwithstanding
the latter being registered in different dictionaries. The vocabulary and its
suggestions offered limited support here because of the different inflected

7The language tagging on the SMS level was made at an earlier date.
8The average SMS counts 115 characters or 20 tokens, the longest one 2,374 characters

or 425 tokens



forms. Looking back, the vocabulary lookup should probably have been
implemented as a fuzzy one, so as to also find similar forms.

6 Conclusions
Manual glossing of a non-standard corpus is a labor-intensive job. Provid-
ing a tool adjusted to the specific needs, thus allowing for cooperation and
an optimized workflow, is imperative, not only because it speeds up the
process, but also because it supports consistency. The technology used in
our project fulfilled its task, but results could have been improved with a
fuzzy vocabulary search and a yet more intensive monitoring of the gloss-
ing process.

References
[1] Alistair Baron and Paul Rayson. VARD 2: A tool for dealing with

spelling variation in historical corpora. Proceedings of the Post-
graduate Conference in Corpus Linguistics, Aston University, 2008.
eprints.lancs.ac.uk/41666/1/BaronRaysonAston2008.pdf

[2] Douglas Crockford. The application/json Media Type for JavaScript
Object Notation (JSON). Internet Engineering Task Force, RFC
4627, 2006. www.ietf.org/rfc/rfc4627.txt

[3] Christa Dürscheid and Elisabeth Stark. sms4science: An Interna-
tional Corpus-Based Texting Project and the Specific Challenges for
Multilingual Switzerland. In Crispin Thurlow and Kristine Mroczek,
editors, Digital Discourse: Language in the New Media., pages 299–
320. Oxford University Press, New York, London, 2011.

[4] XML Path Language (XPath) 2.0 (Second Edition). W3C Recom-
mendation 14 December 2010. www.w3.org/TR/xpath20/

[5] XQuery Update Facility 1.0. W3C Recommendation 17 March 2011.
www.w3.org/TR/xquery-update-10/




