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ABSTRACT 

One of the goals of natural language processing (NLP) systems is determining the 

meaning of what is being transmitted.  Although much work has been accomplished in 

traditional written and spoken language domains, little has been performed in the newer 

computer-mediated communication domain enabled by the Internet, to include text-based 

chat.  This is due in part to the fact that there are no annotated chat corpora available to 

the broader research community.  The purpose of our research is to build a chat corpus, 

initially tagged with lexical and discourse information.  Such a corpus could be used to 

develop stochastic NLP applications that perform tasks such as conversation thread topic 

detection, author profiling, entity identification, and social network analysis. 

During the course of our research, we preserved 477,835 chat posts and associated 

user profiles in an XML format for future investigation.  We privacy-masked 10,567 of 

those posts and part-of-speech tagged a total of 45,068 tokens.  Using the Penn Treebank 

and annotated chat data, we achieved part-of-speech tagging accuracy of 90.8%.  We also 

annotated each of the privacy-masked corpus’s 10,567 posts with a chat dialog act.  

Using a neural network with 23 input features, we achieved 83.2% dialog act 

classification accuracy. 
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I. INTRODUCTION 

A. MOTIVATION 

Computer-mediated communication (CMC), as defined by Herring, is 

“communication that takes place between human beings via the instrumentality of 

computers [1].”  Per this definition, the CMC domain, which is distinct from traditional 

written and spoken domains, includes genres such as e-mail, newsgroups, weblogs, 

instant messaging (IM), and text-based chat.   

Chat is distinguished from the other CMC genres based on the “near-

synchronous” participation of multiple users spatially separated from one another.  This 

seemingly simple concept, powered by the Internet, has permitted groups of people to not 

only communicate with one another, but to collaborate real-time on problems they 

collectively face.  Indeed, a perfect example of this is military use of text-based chat, 

which has supplanted traditional command and control (C2) systems as a primary way of 

moving time-critical information around the tactical environment [2]. 

Orthogonal to written, spoken, and CMC domains is the development of natural 

language processing (NLP) applications to enhance communication itself.  Many 

examples exist where NLP applications tailored for the written and spoken domains are 

changing the way we live.  These include spelling- and grammar-checking on our word 

processing software; voice-recognition in our automobiles; and telephone-based 

conversational agents that help us troubleshoot our personal and business account issues.  

Even more sophisticated “semantic” applications are currently under development, such 

as automated tools that assist in the identification of entities in written (electronic) 

documents along with the associated social networks that tie those entities together.   

Chat, as an example of the CMC domain, can also benefit from NLP support.  For 

instance, text-based conversational agents can help customers make purchases on-line 

[3].  In addition, discourse analyzers can automatically separate multiple, interleaved 

conversation threads from chat rooms either in real-time or after the fact in support of 
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information retrieval applications.  Finally, author-profiling tools can help detect 

predatory behavior in a recreational chat setting, or even the illegitimate use of chat by 

terrorist and other criminal organizations. 

Most NLP applications are stochastic in nature, and are thus trained on corpora, or 

very large samples of language usage, tagged with lexical, syntactic, and semantic 

information.  The Linguistic Data Consortium (LDC), an open organization consisting of 

universities, companies, and government research laboratories, was founded in 1992 to 

help create, collect, and distribute such databases, lexicons, and other resources for 

computer-based linguistic research and development.  As of August 2007, the LDC has 

made available 381 text-, audio-, and video-based corpora to the larger research 

community [4]. 

Not surprisingly, the effectiveness of an NLP application for a particular domain 

is largely influenced by the information it learns during training.  As noted by the LDC,  

Different sorts of text have different statistical properties—a model trained 
on the Wall Street Journal will not do a very good job on a radiologist's 
dictation, a computer repair manual, or a pilot's requests for weather 
updates…This variation according to style, topic and application means 
that different applications benefit from models based on appropriately 
different data—thus there is a need for large amounts of material in a 
variety of styles on a variety of topics—and for research on how best to 
adapt such models to a new domain with as little new data as possible [4]. 

However, of the 381 corpora provided by the LDC, only three contain samples 

from the CMC domain and none from chat in particular.  And yet, CMC and chat are not 

going away anytime soon. 

Thus, as noted earlier by LDC, if we seek to build NLP applications for chat, we 

must accomplish two things: 1) Collect chat data and annotate it with lexical, syntactic, 

and semantic information; and 2) Adapt existing resources (both corpora from other 

domains and NLP algorithms) in conjunction with this annotated chat corpus to tailor 

automated tools to support chat use.  These two observations form the foundation of our 

research presented in this thesis.   
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B. ORGANIZATION OF THESIS 

We have organized this thesis as follows.  In Chapter I we provide a motivation 

for the creation of an online chat corpus with tailored NLP techniques.  In Chapter II we 

provide a synopsis of previous work in the area, to include: 1) The linguistic study of chat 

and comparison to traditional spoken and written communication domains; 2) How chat 

is currently used today, and where it can benefit from NLP; and 3) A review of general 

NLP techniques we will bring to bear on our research, to include annotated corpora, part-

of-speech tagging, and dialog act modeling.  In Chapter III we detail our technical 

approach, to include: 1) The approach we used to build the chat corpus; 2) The 

supporting mathematical foundation for the algorithms we used in both automated part-

of-speech tagging and chat dialog act classification; and 3) The experimental set-up we 

used to test the effectiveness of those algorithms.  In Chapter IV we discuss our results, to 

include: 1) The lexical statistics we collected from our chat corpus, along with a 

comparison to similarly sized corpora samples from the spoken and written domains; 2) 

Our part-of-speech tagger performance on the chat domain based on both the training 

data we used as well as the algorithms we employed; and 3) Chat dialog act classification 

results based on both the features we selected to measure as well as the algorithms we 

employed.  Finally, in Chapter V we provide a summary of our work along with 

recommendations for future research. 
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II. BACKGROUND 

In this chapter we review a broad body of work related to chat and Natural 

Language Processing (NLP) techniques.  First, we will examine chat from a linguistic 

perspective, and highlight its similarities and differences to written and spoken language 

domains.  Then, we will cover how chat is used today, and identify how NLP can be used 

to address requirements of applications that support its legitimate use (or detect its 

illegitimate use).  Finally, we will provide a brief history of NLP techniques that we will 

apply to our chat research, to include part-of-speech tagging and dialog act classification.   

A. LINGUISTIC STUDY OF CHAT 

Before we start our discussion on the linguistic study of chat, we must first 

provide a common frame of reference with regards to chat itself.  Although several chat 

protocols and applications abound, all contain variants of the following three features.  

First, there is a frame that displays all current participants in the particular session.  This 

frame is updated as participants log on/off to the chat “room”, and is publicly viewable to 

all currently in the room.  Second, there is a frame displaying all posts submitted by all 

chat participants in the order that they arrived at the server.  Thus, this main dialog frame 

is a record of all the (often interlaced) conversation threads that have taken place since 

the individual participant logged on to the room, and as such is also publicly viewable.  

Finally, there is a frame that is used for editing each participant’s posts to the main dialog 

frame.  Unlike the other two frames, though, this editing area is not publicly viewable.  

Only once the individual hits “Enter” do the contents of the editing frame become visible 

to the other participants in the main dialog frame.   

Note that these limits on how chat is technically implemented are what give chat 

its near-synchronous quality.  Often, one participant will respond to an earlier post at 

nearly the same time as another participant (to include the original poster) is responding.  

However, the application can only post those responses in the main dialog frame one at a 

time.  This results in an interlacing effect among posts, even within a single conversation 

thread. 
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With these observations in mind, we are now ready to provide a brief review of 

the study of chat from a linguistic perspective.  We first introduce a theoretical approach 

to communication in the chat domain, to include how traditional language constructs are 

modified for use in a domain enabled as well as restricted by technology.  We then 

present an empirical study that explicitly compares language features used in a specific 

context (political discussion) across the written, spoken, and chat domains.   

1. Zitzen and Stein’s Linguistic Theory for Chat 

Zitzen and Stein present a linguistic theory for chat founded in its pragmatic, 

social, and discourse communication properties [5].  As such, a primary objective of their 

research was to ascertain whether chat is simply a combination of written and spoken 

language, or if its properties are unique enough such that it constitutes a new genre within 

the CMC domain.  Their theory is based in part on part on observations taken from three 

different chat sessions, which comprised a total of seven hours and eight minutes of 

verbal interaction and 12,422 words (not including words from system-generated 

messages). 

One of the key features that can be used to distinguish chat from written and 

spoken domains is Nystrand’s notion of Context of Production and Context of Use [6].  In 

particular, how Context of Production and Context of Use relate to one another across 

space and time help differentiate between the domains.  As Zitzen and Stein observe, 

In face-to-face [spoken] conversations where the participants are 
physically co-present, Context of Production and Context of Use are 
concurrent.  In other words, co-present participants can monitor another 
person’s speech [and other physical cues] as it develops.  Traditional 
written discourse is characterized by the spatiotemporal separation of 
Context of Production and Context of Use [5]. 

For chat, the aforementioned private editing frame functions as Context of 

Production, while the public main dialog frame functions as Context of Use.  Since 

typing and editing a message cannot be monitored by the other chat participants, Context 

of Production is divorced from Context of Use.  Thus, from a Context of Production 

perspective, chat is closer to written language, since per Zitzen and Stein “…there is no 
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incremental top-down, anticipatory processing of the auditory sound material…[as well 

as] paralinguistic information [5].”  That being said, Context of Use for chat is much 

closer to that of spoken language as compared to written discourse such as letter writing 

or even email. 

Another concept that can be used to differentiate chat from the other domains is 

the conversational concept known as turn-taking.  Turn-taking is the process that 

determines who gets to “hold the floor” in a conversation.  Sacks et al proposes the 

following “algorithm” (presented in Table 1) that is used by spoken conversation 

participants to allocate turns.  Further, Sacks et al asserts this algorithm generates two 

driving forces in spoken conversation: avoidance of silence and avoidance of overlapping 

talking [7]. 

1. The current floor holder may implicitly or explicitly select the next speaker, who is then 
obliged to speak. 

2. If the current floor holder does not select the next speaker, the next speakership may be 
self-selected.  The one who starts to talk first gets the floor. 

3. If the current speaker does not select the next speaker, and no self-selected speakership 
takes place, the last speaker may continue. 

4. If the last (current) speaker continues, rules 1-3 reapply.  If the last (current) speaker 
does not continue, then the options recycle back to rule 2 until speaker change occurs. 

Table 1.   Turn Allocation Techniques in Spoken Language (From [7]) 

Zitzen and Stein assert that in chat conversations “a much more intricate and 

complicated layering of partial [turn-taking] mechanisms” replace those of Sack’s et al 

turn allocation algorithm for spoken conversations [5].  First, the speaker-selection 

properties described in Table 1 are replaced with a “first message to server, first message 

posted to dialog frame” concept.  Thus, technology (and not personal relations and face 

management) determines who obtains the floor in chat.   

Second, Zitzen and Stein assert that the concept of being a “hearer” or “speaker” 

in chat is much more complex than that in spoken conversation [5].  They note that 

Garcia and Jacobs observed 
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A [chat] participant can be a waiter and a reader at the same time, both 
waiting for a response to a previous post and simultaneously reading or 
scrolling through previous postings.  A typing participant who is awaiting 
a response to an earlier message is both a waiter and message constructor 
[8].  

Again, chat technology permits participants to play multiple roles at the same time.   

Regarding silence, Zitzen and Stein note that lapses in conversation are socially 

stigmatized in spoken conversation, with one of the effects being to cause participants to 

engage in small talk just to keep conversation going.  In chat, silence can be characterized 

by two types: total silence, where there are no postings at all; and selective silence, where 

a participant does not respond to a post addressed to him/her [5].  Zitzen and Stein assert 

that, as in spoken conversation, silence in chat, although also not desirable, is not as 

socially damaging [5].  Again, technology plays a role in the greater acceptance of (or 

forgiveness for) silence in chat.  Instead of responding to a post directed to him/her, 

Zitzen and Stein state that a chat participant may be “reading [other] incoming messages, 

scrolling through previous logfiles, waiting for a response, and even typing a message 

[5].”  That being said, they note that chat participants do make active attempts to 

forewarn others of activities that may be misconstrued as silence.   

Entering a chat is less obliging than entering a conversation in the sense 
that the participants in a conversation have to stay until there is some 
negotiated and agreed upon closing procedure.  Contrary to face-to-face 
situations where participants are rather hesitant to leave the room in the 
middle of an ongoing conversation, in chats we find constant coming and 
going, frequently accompanied by the use of the acronym BRB (be right 
back) [also AFK, “away from keyboard”] which functions as a meta-
communicative attempt. [5] 

Lurking, a feature that appears to be unique to chat and other forms of CMC, is 

the concept of silence taken to the extreme, with the chat participant never contributing to 

the ongoing dialog.  Zitzen and Stein note that in spoken conversation, there is a strict 

boundary between those that participate and those that do not [5].  Although 

eavesdropping certainly occurs in conversations, the eavesdropper is not a ratified 

conversation participant.  In spoken conversation, participants must go through a process 

of acceptance, where newcomers must first negotiate their entry.  In chat, technology 
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handles this negotiation process, with system messages indicating “User X has 

entered/left the room” and the application’s participant frame indicating to all who is 

currently in the room.  That being said, Zitzen and Stein note that as the number of 

participants increase, so does the potential for successful lurking, since the presence of 

the lurker is forgotten due to their lack of dialog contribution as well as their 

disappearance in the “sea” of participants in the application’s participant frame [5].  Once 

lurking has been detected in chat, it is usually confronted and criticized.  Indeed, chat 

applications now have the ability for users with administrator-like privileges to “kick” 

lurkers out of the room. 

With these considerations in place, Zitzen and Stein define two states for chat 

conversational presence: lurking (second order presence), and composing/appearing on 

screen (first order presence) [5].  In other words, “not messaging a word means being 

virtually absent, while more frequently messaging establishes a perception of presence 

[5].”  However, as in spoken conversation, there is an expected level of contribution 

among participants.  As mentioned earlier, silence is undesirable, yet too much 

contribution is regarded as “hogging the conversation”.  Thus, first order chat participants 

feel the need to regulate both the number of posts they make as well as their length.  

Zitzen and Stein elaborate 

Longer messages do not only take a longer to type, but they also occupy 
more space in the public dialog box, at the same time pushing away other 
participant’s contributions, which in turn decreases the other one’s virtual 
presence…Shorter messages are not only less time-consuming with regard 
to production, waiting, and reception, they also help to place a message as 
adjacent as possible to a previous message, a participant wishes or is asked 
to respond to [5]. 

Thus, chat participants must balance their level of verbal activity to maintain 

mutual presence within the ongoing conversation.  Given chat’s technical considerations, 

participants achieve this in part through what Zitzen and Stein have defined as the “split 

turn,” where a single contribution “utterance” is broken up into two or more posts [5].  

Based on their data, Zitzen and Stein categorize the split turn phenomenon into four 

different types, with their construction employing different linguistic techniques.  These 
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techniques include (but are not limited to) continuation posts starting with transitional 

relevance place words such as conjunctions and prepositions; the use of ellipses (…) at 

the end of messages to indicate more to come; multiple successive posts by the same 

participant, each addressing a different topic and/or participant; etc. 

With this description of Zitzen and Stein’s theory of chat complete, we need to 

address how their observations potentially impact an NLP application.  We believe that 

split turns have a definite impact on how NLP applications handle chat text at the lexical, 

syntactic, and semantic levels, particularly if the application intends to use data from non-

chat domains to train on.  From as lexical perspective, a word’s part-of speech tag is 

dependent in part on its context; words near the boundaries of split turns lose part of that 

context.  Similarly, potential syntactic productions (e.g. noun phrases expanding to nouns 

and prepositional phrases) are lost when those productions occur across split turn 

boundaries.  Finally, the full meaning of a single utterance requires access to all split 

turns that it comprises.  Thus, an NLP application for the chat domain must have a way to 

both identify split turns and, as necessary, combine those that represent a single utterance. 

With our discussion of Zitzen and Stein complete, we now turn Freiermuth’s 

explicit comparison between chat and counterparts within the written and spoken 

domains.   

2. Freiermuth’s Comparative Analysis of Chat, Written, and Spoken 
Texts 

In his Ph.D. dissertation, Freiermuth explicitly compared chat with traditional 

written and spoken language from the same content domain—political discussion [9].  To 

maintain consistency, he selected 3000 words for each type of communication.  For the 

spoken domain, he used the first 500 transcribed words (excluding the monologue) from 

six different episodes of Politically Incorrect, a late-night television program.  For the 

written domain, he used samples from the editorial section of the Standard-Times, a 

newspaper which serves the south coast of Massachusetts.  Finally, for chat Freiermuth 

collected samples from one of the political chat channels on America Online, entitled 

From the Left.   



 11

Freiermuth used grammatical and functional features identified by Chafe and 

Danielewicz’s cognitive approach to compare the three domains [10].  These features can 

be grouped into five categories: 1) Vocabulary variety; 2) Vocabulary register; 3) 

Syntactic integration; 4) Sentence-level conjoining; and 5) Involvement and detachment.  

A description of these categories, the specific features used, and a summary of 

Freiermuth’s findings for how chat compares with spoken and written domains follows.   

Vocabulary variety refers to the size of the vocabulary used in the particular 

domain [9].  Under this category, Freiermuth measured type/token ratios, or the total 

number of words in the sample divided by the number of unique words in the sample; 

hedging, reflecting when the participant is dissatisfied with the lexical choice (“sort of” 

and “kind of”); and inexplicit third person use (“it”, “this”, and “that”) that have no 

clearly identified antecedent.  Based on these measurements, Freiermuth had the 

following conclusions. 

[First,] Chatters have more time to choose appropriate vocabulary when 
compared to speakers.  [Second,] Chatters increase variety by using 
creative and innovative language forms, as well as addressivity.  [Third,] 
Chatters do not use hedges, indicating they are either satisfied with their 
language choices or that they do not care if they are imprecise because 
they cannot be held accountable for what they say [9]. 

Vocabulary register, or level, refers to the types of words that are common in 

spoken versus written settings [9].  Under this category, Freiermuth specifically measured 

literary language use, or the number of words that are not considered usual in typical 

spoken language (e.g. “elaborate” and “introspection”); colloquial language use, or the 

number of words that appear lexically fresh, i.e. change over time (e.g. “chill out”); and 

contractions.  Based on these measurements, Freiermuth had the following conclusions. 

[First,] Chatters have less time than writers (much), but more time than 
speakers.  Their cognitive processing of language is not under the same 
heavy demands that speakers face.  [Second,] Chatters tend to mimic 
spoken language, but because they are aided by time, they sometimes 
elevate their language sophistication [9]. 

Syntactic integration refers to a strategy employed primarily by writers to 

incorporate linguistic elements into clauses to be more concise and precise while 
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expanding intonation [9].  Under this category, Freiermuth specifically measured 

prepositions and stringed prepositions; complex causal conjoining; locative and temporal 

adverbs; and preposed attributive adjectives and noun modifiers.  Based on these 

measurements, Freiermuth had the following comments and conclusions. 

[First, depending on the chat application,] Chatters are limited by their 
environment.  AOL restricts the number of characters a participant may 
type per turn, so integration is not a useful strategy.  [Second,] Chatters 
must cope with many simultaneous difficulties, while trying to be an 
active member of the conversation.  The complex dynamics of Internet 
chat (e.g., the number of chatters, the problem of intervening turns from 
multiple conversations, the difficulties of processing text embedded in the 
midst of dialogic interaction, etc) do not warrant expanding units.  [Third,] 
Chatters are capable of more complex clausal interaction, but prefer speed 
to precision [9]. 

Sentence level conjoining refers to using conjunctions to join smaller sentences 

into larger ones.  Freiermuth states that speakers primarily use this as a way to both 

establish and maintain the floor in a conversation as well as to organize their thoughts [9].  

For this category, Freiermuth’s data indicated that chat text was more like written text 

based on the following rationale. 

[First] Chatters have no need to establish or maintain the floor because 
they construct dialog simultaneously with other chatters who are online.  
In other words, the floor is always available to them.  [Second,] Chatters 
do not need to organize their thoughts within the framework of a 
conversation.  They can take as much time as they want without affecting 
conversational dynamics [9]. 

The final category refers to the observation that written language is usually more 

detached, while spoken language is usually more involved.  Under this category, 

Freiermuth specifically measured the number of “you/ya knows”; the number of first, 

second, and third person pronouns; indicators of probability, such as “normally” and 

“possibly”, which permit the communicate an escape from culpability; and the use of 

passives and addressivity, which refer to degree with which the communicator indicates a 

concrete “doer” for a particular action [9].  Based on these measurements, Freiermuth had 

the following conclusions. 
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[First,] Chatters have no need to cue interlocutors with classic discourse 
markers.  In fact, such markers would probably have little effect on the 
participants online.  [Second,] Chatters tend not to respond to questions.  
They cannot be held accountable if they fail to answer questions, and it is 
likely the problem of intervening turns causes them to forget to answer 
questions.  [Third,] Chatters use second person pronouns at about the same 
frequency as [spoken] conversationalists, but they tend to use them in a 
more confrontational way, while conversationalists use them in a generic 
sense quite frequently.  [Fourth,] Chatters must use addressivity to target a 
particular chatter that is online; otherwise, it is quite difficult to identify 
who is chatting to whom [9]. 

With Freiermuth’s observations in mind, we need to address how they potentially 

impact an NLP application tailored for use with chat.  Obviously, chat has features of 

both spoken and written language.  For example, chatters exhibit the vocabulary diversity 

of written communicators.  And yet, Freiermuth notes that they prefer not to expand 

clausal units the way written authors do, instead favoring speed over precision [9].  As 

such, if chat-specific training data is limited for an NLP application, it would seem to 

make sense to make use of training data from both spoken and written domains.  An 

interesting question would be if there is a preferred ratio of spoken to written training 

data that optimally mimics chat.  Furthermore, depending on the NLP application, one 

type of data might be preferred over the other.  Using our examples above, since chat is 

closer to written language in terms of vocabulary size, training data from the written 

domain might be preferred for a part-of-speech tagging application.  However, since 

posts are less complex structurally in chat compared to the written domain (as evidenced 

by lack of clausal unit expansion), then perhaps transcribed spoken text might be better 

for syntax parsing.    

With our brief overview of the linguistic study of chat complete, we now turn to 

how chat is being used (and misused) today.   

B. CHAT USE TODAY 

In this section we introduce two uses of NLP in chat today: 1) Military use in 

support of tactical command and control (C2) processes; and 2) Detecting illegitimate 



 14

chat use.  In both cases we provide examples of high level chat application requirements, 

and identify how NLP can be used to meet those requirements.   

1. Tactical Military Chat 

In his master’s degree thesis, Eovito explored the impact of synchronous, text 

based chat to fill gaps in military systems for tactical C2 [2].  Eovito notes that, as is the 

case with many military systems, the use of chat for tactical C2 evolved in an ad hoc 

fashion.  As such, there has never been a formal requirements analysis of text-based chat 

tools either from a top-down (“What C2 deficiencies are addressed by chat tools?”) or 

bottom-up (“What capabilities do chat tools bring to the war fighter?”) perspective.  A 

primary objective of Eovito’s research was to develop such a set of requirements to help 

guide the development of next-generation C2 systems. 

To develop requirements for military tactical chat, Eovito first administered both 

surveys and interviews to establish a set of use cases.  Eovito solicited responses from 

users spanning all four U.S. military services as well as Canadian, Australian, and New 

Zealand coalition forces.  The settings where those users employed tactical chat spanned 

major combat such as Operations Enduring Freedom (OEF) and Iraqi Freedom (OIF) to 

military operations other than war (MOOTW) such as Hurricane Katrina relief. 

From these use cases, Eovito then extracted a framework for tactical chat 

requirements.  The framework consisted of four categories: Functionality, Information 

Assurance, Scalability, and Interoperability.  A complete list as well as description of 

tactical chat requirements in all categories can be found in [2]. 
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NLP techniques are critical to fully address many of the functional requirements 

depicted in Table 2.  For example, thread population/repopulation, a core requirement, 

consists of the ability for users to select a portion of the chat log (i.e., conversation 

thread) to repopulate in the event of late entry into a chat session.  Such an automated 

feature requires the system to select only the subset of posts within the overall session 

that comprise the specific thread.  Semantic and discourse NLP techniques are vital in 

accomplishing this task.  Similarly, foreign language text translation requires NLP 

techniques that can identify idioms across languages (e.g. “bogey moving like a bat out of 

hell!”) and translate accordingly. 

1. Participate in Multiple Concurrent Chat Sessions* 
2. Display Each Chat Session as Separate Window 
3. Persistent Rooms & Transitory Rooms* 
4. Room Access Configurable by Users 
5. Automatic Reconnect & Rejoin Rooms* 
6. Thread Population/Repopulation* 
7. Private Chat "Whisper"* 
8. One-to-One IM (P2P) 
9. Off-line Messaging 
10. User Configured System Alerts 
11. Suppress System Event Messages 
12. Text Copying* 
13. Text Entering* 
14. Text Display* 
15. Text Retention in Workspace* 
16. Hyperlinks 
17. Foreign Language Text Translation 
18. File Transfer 
19. Portal Capable 
20. Web Client 
21. Presence Awareness/Active Directory* 
22. Naming Conventions Identify Functional Position* 
23. Multiple Naming Conventions 
24. Multiple User Types 
25. Distribution Group Mgmt System for Users 
26. Date/Time Stamp* 
27. Chat Logging* 
28. User Access to Chat Logs* 
29. Interrupt Sessions 
(* denotes a core requirement) 

Table 2.   Consolidated Functional Requirements for Tactical Military Chat (From [2]) 

Similarly, NLP can play a role in meeting information assurance requirements as 

depicted in Table 3.  For example, Eovito notes that many user IDs in the various 

sessions are functional, making it difficult to know who is really in the chat room.  
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However, NLP can be used to identify characteristics of an author’s language use, thus 

supporting user authentication.  In addition, NLP lexical and semantic techniques can 

assist in permitting authorized transfer of information across domains within a security 

level (e.g. Joint vs. Coalition information) as well as across levels (e.g., Secret vs. Top 

Secret).   

1. Login and User Authentication 
2. Access Control 
3. User Authentication by Active Directory 
4. Unique ID for all users worldwide 
5. PKI Enabled (DOD Common Access Card) 
6. Provide Encryption 
7. Network Security Tools 
8. Cross Security Domain Functionality 
9. Multi-Level Security Operation 
10. Cross Security Domain Functionality 

Table 3.   Consolidated Information Assurance Requirements for Tactical Military Chat 
(From [2]) 

Eovito concludes with recommendations for follow on research in the following 

categories: 1) Chat data mining; 2) Net-Centric Enterprise Services; 3) Extensible 

Markup Language (XML); 4) Human Factors; 5) Specific War Fighting Doctrine; and 6) 

Information Assurance [2].  We have already discussed how NLP plays a role with 

information assurance.  That being said, NLP techniques can improve the performance of 

data mining, where semantic and discourse clues can help narrow the search space for a 

particular thread.  Similarly, many human factor concerns must be addressed by NLP, 

which can improve the human system interface by permitting humans to “command” the 

chat system with natural language.   

We have demonstrated how NLP techniques can play a role in improving the 

legitimate use of chat in a military context.  We now examine how they can be used by 

law enforcement and intelligence analysts to detect illegitimate use of chat. 

2. Detecting Illegitimate Chat Use 

In her master’s thesis, Lin provides motivation for the study of chat and 

associated behavior [11].  As with any new technology, there is potential both for the 
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betterment of and detriment to society, and the Internet is no exception.  Not only does 

Internet-based chat permit people to communicate for both business and pleasure, it is 

also a medium with great potential for misuse.  Lin specifically notes how Internet-based 

chat has exacerbated the problem of sex crimes committed against children.  In addition, 

she postulates how chat can be used by terrorists to communicate, thus enhancing 

planning, command, and control for terrorist groups as well as other criminal 

organizations.   

In response to this, Lin proposed that authorship attribution techniques can be 

used to automatically detect whether chat is being abused in a particular setting [11].  To 

put her theory to test, she collected 475,000+ posts made by 3200+ users from five 

different age-oriented chat rooms at an Internet chat site.  The chat rooms were not 

limited to a specific topic, i.e. were open to discussion of any topic.  Lin’s goal was to 

automatically determine the age and gender of the poster based on their chat “style” as 

defined by features of their posts.  Thus, if a particular user in a teen-oriented chat room 

made posts with features associated with an adult male, this information could be used by 

authorities to more closely scrutinize this user’s behavior. 

The specific features Lin captured for each post were surface details, namely, 

average number of words per post, size of vocabulary, use of emoticons, and punctuation 

usage [11].  Lin relied on the user’s profile information to establish the “truth” of each 

user’s age and gender.  Lin then used the Naïve Bayes machine-learning method 

(described in greater detail in Chapter III) to automatically classify the user’s age and 

gender based on the aforementioned features of all the posts the user made. 

Lin’s work represents a significant, albeit initial, effort to apply NLP techniques 

specifically to chat to determine author characteristics.  Although her results were mixed, 

better surface features (e.g. distribution of all words used instead of just emoticons and 

punctuation) as well as “hidden” features (e.g. syntactic structure of the posts) have the 

potential to improve authorship classification accuracy. 

With our brief description of how NLP can be used in chat applications, we now 

turn to the linguistic study of the chat domain. 
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C. NATURAL LANGUAGE PROCESSING TECHNIQUES 

In this section we provide a brief review of the natural language processing 

techniques we will use in our research on chat.  We first introduce both the concept and 

specific examples of corpora labeled with meta-information.  We then discuss automated 

part-of-speech tagging, to include specific techniques that have been developed, how it 

supports higher level NLP applications, and factors that influence its performance.  

Finally, we present automated dialog act classification, to include its use in NLP 

applications, exhaustive results from a spoken domain, and initial results in the CMC 

domain.  Note that in this section we limit our targeted NLP review to a historical 

perspective.  We discuss the specific technical implementation of automated part-of-

speech tagging and dialog act classification methods in Chapter III. 

1. Annotated Corpora 

State-of-the-art natural language processing applications rely on labeled data for 

training.  Over the years, numerous corpora annotated with lexical, syntactic, and 

semantic “meta-information” have been developed for such purposes.  One of the first 

corpora available to the larger NLP research community was developed in the 1960s by 

Francis and Kucera at Brown University [12].  Commonly referred to today as the Brown 

Corpus, it contained over one million words collected from 500 samples written by native 

speakers of American English and first published in 1961.  The samples from the 15 

genres are shown in Table 4.    
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1. Press: Reportage (44 texts: Political, Sports, Society, Spot News, Financial, Cultural) 
2. Press: Editorial (27 texts: Institutional Daily, Personal, Letters to the Editor) 
3. Press: Reviews (17 texts: Theatre, Books, Music, Dance) 
4. Religion (17 texts: Books, Periodicals, Tracts) 
5. Skill and Hobbies (36 texts: Books, Periodicals) 
6. Popular Lore (48 texts: Books, Periodicals) 
7. Belles-Lettres: Biography, Memoirs, etc (75 texts: Books, Periodicals) 
8. Miscellaneous: US Government & House Organs (30 texts: Government Documents, 

Foundation Reports, Industry Reports , College Catalog, Industry House organ) 
9. Learned (80 texts: Natural Sciences, Medicine, Mathematics, Social and Behavioral 

Sciences, Political Science, Law, Education, Humanities, Technology and 
Engineering) 

10. Fiction: General (29 texts: Novels, Short Stories)  
11. Fiction: Mystery and Detective Fiction (24 texts: Novels, Short Stories)  
12. Fiction: Science (6 texts: Novels, Short Stories) 
13. Fiction: Adventure and Western (29 texts: Novels, Short Stories)  
14. Fiction: Romance and Love Story (29 texts: Novels, Short Stories)  
15. Humor (9 texts: Novels, Essays, etc.) 

Table 4.   Brown Corpus Description (From [12]) 

The original corpus contained only the words themselves.  Later, 87 part-of-

speech tags were applied to the corpus, permitting a variety of statistical analysis on the 

texts themselves as well as providing training data for NLP applications.  Because of its 

widespread availability to researchers, the Brown corpus became a de facto standard 

model for the English language. 

Seeking to institutionalize the availability of corpora such as Brown, the 

Linguistic Data Consortium (LDC), first mentioned in Chapter I, was founded with a 

grant from the Defense Advanced Research Projects Agency [4].  Such corpora are 

expensive to create, maintain, and distribute; thus, the service provided by LDC enables 

replication of published results, supports a fair comparison of algorithms, and permits 

individual users to make corpora additions and corrections.  Since many of the data 

contributions are copyrighted, the LDC distributes them for the purposes of research, 

development, and education through more than 50 separate Intellectual Property Rights 

(IPR) contracts.   
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It is interesting to note that LDC comments on the future requirements for 

linguistic technology.  Specifically, 

We humans spend much of our lives speaking and listening, reading and 
writing. Computers, which are more and more central to our society, are 
already mediating an increasing proportion of our spoken and written 
communication—in the telephone switching and transmission system, in 
electronic mail, in word processing and electronic publishing, in full-text 
information retrieval and computer bulletin boards, and so on [4]. 

However, as noted in Chapter I, of the 381 corpora provided by the LDC, only 

three contain samples from the computer-mediated communication domain: 

LDC2006T06 (ACE 2005 Multilingual Training Corpus, which contains newsgroup and 

weblog samples); LDC2006T13 (Google’s Web 1T 5-gram Version 1); and 

LDC2007T22 (2001 Topic Annotated Enron Email Data Set) [4].  If we seek to build 

NLP applications that support CMC such as chat, we require a certain amount of data 

from the domain itself.   

With our brief discussion on the role corpora play in state-of-the-art NLP 

applications in general, we now turn to an important component of such applications: 

part-of-speech tagging. 

2. Part-of-Speech Tagging 

Part-of-speech tagging is the process of assigning a part-of-speech label (e.g. 

verb, noun, preposition, etc) to a word in context based on its usage.  Several higher order 

NLP applications rely on part-of-speech tagging as a preprocessing step.  For example, 

both [13] and [14] note that information retrieval applications make use of part-of-speech 

tagging, which often involves looking for nouns and other important words that can be 

identified in part by their part-of-speech tag.  Indeed, the dialog act classification 

application that we developed for chat incorporated some features based on word part-of-

speech tags.  As such, part-of-speech tagging is an important topic to discuss when 

applying NLP techniques to a heretofore unexplored domain. 
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a. Algorithmic Approaches  

Jurafsky and Martin describe three classes of algorithms for part-of-speech 

tagging [14].  The first class, commonly referred to as rule-based taggers, rely on a two 

phase approach assign tags.  In the first phase, a dictionary is used to assign each word a 

set of potential parts-of-speech.  The second phase uses large lists of hand-written rules 

that are successively applied to reduce the set to a single tag.  One rule-based tagging 

approach, referred to as the English Constraint Grammar (EngCG), reports accuracies of 

99%, although not all ambiguities are resolved, i.e. EngCG sometimes returns a set that 

includes more than one tag. 

The second class, referred to as stochastic taggers, use probabilities based 

on counts of words and their tags from a training corpus [14].  Stochastic taggers include 

n-gram-based tagging approaches as well as Hidden Markov Models (HMMs), which 

differ based on the varying degrees of context considered by the algorithms.  We present 

a full description of the technical details for both stochastic tagging approaches in 

Chapter III.  HMM-based tagging approaches report accuracies of 95-96%. 

The final class, known as Brill Transformational-Based Learning tagging, 

is essentially a combination of the previous two classes [14].  As with rule-based tagging, 

the algorithm uses rules successively applied to initially assign and later refine part-of-

speech tags.  However, like stochastic taggers, the rules are learned based on the 

frequency of their successful application within a training corpus.  We present a full 

description of the Brill rule templates and learning algorithm in Chapter III.  Brill reports 

tagging accuracies of 96-97% using this approach [15].     

With our discussion of tagging approaches complete, we now look at how 

they work in conjunction with annotated corpora to affect overall tagging performance.     

b. Performance Factors 

Manning and Schütze note that the performance of part-of-speech taggers 

is greatly influenced by four factors [13].  We note these factors, along with their 

potential effect on a part-of-speech tagger crafted specifically for the chat domain.  The 
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first, the amount of training data available, is straightforward: the more data available to 

train on, the better the accuracy of the tagger.  Since no publicly available tagged corpus 

currently exists for the chat domain, one will have to be created.  By its very nature, then, 

this will be a resource-intensive activity, and as such will initially be much smaller than 

those available for the more established written and spoken domains.   

The second factor is the tag set used [13].  Although a larger tag set 

permits a more fine-grained determination for a particular word in context, this very fact 

leads to the potential for more ambiguity of the given word.  Thus, if a corpus is tagged 

with two tag sets, as is the case with the Brown corpus (original Brown 87 POS tag set 

and later Penn Treebank 45 POS tag set), taggers using the same algorithm will generally 

have a higher accuracy on the corpus tagged with the smaller tag set.  Therefore, when 

tagging a chat domain corpus, we would prefer to use a smaller, established tag set.  That 

being said, the chat domain contains features such as emoticons (e.g., “:-)”, a smiley face 

on its side) that do not exist in other domains.  As such, we would need to decide if an 

existing tag appropriately describes emoticon usage, or if instead a new tag should be 

created.   

The third factor is the difference between the training corpus and the 

corpus of application [13].  If the training and application text are drawn from the same 

source, accuracy will be high.  This is generally the case for the highest accuracy taggers 

described in the literature.  However, as alluded to in the LDC quote from Chapter I, if 

training and application text are from a different domain, accuracy can be poor.  Thus, the 

task of building a highly accurate POS tagger for the chat domain is complicated by the 

fact that currently tagged corpora are from significantly different domains.  Experiments 

that consider tagging accuracy on chat based on the training domain are presented in 

Chapter IV. 
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The final factor affecting tagging accuracy is the occurrence of unknown 

words [13].  Obviously, the more words encountered in application that have not been 

seen during training, the more tagging performance will suffer.  This may play a 

particularly important role in the chat domain, where misspellings as well as the use of 

emphasis through character repetition (e.g., “riiiiiiggggghht” for “right”) are frequently 

encountered.   

With our overview of part-of-speech tagging tools complete, we now turn 

our discussion to a higher-order NLP task—dialog act modeling.  

3. Dialog Act Modeling 

The dialog act, per Austin, represents the meaning of an utterance at the level of 

illocutionary force [16].  In layman’s terms, dialog act classification categorizes a 

conversational element into classes such as “statements”, “opinions”, “questions”, etc.  

Thus, dialog acts provide a first level of analysis for discourse structure.   

Dialog act modeling has a wide number of potential applications.  As described 

by Stolcke et al, a meeting summarization application needs to keep track of who said 

what [17].  Similarly, a telephone-based conversational agent needs to know if it was 

asked a question or tasked to do something.  Indeed, Stolcke et al demonstrated that 

dialog act labels could be used in a speech recognition system to improve word 

recognition accuracy by constraining potential recognition hypotheses.  Dialog acts might 

also be used to infer the types of relationships (e.g. superior to subordinate versus peer to 

peer) that occur within a social network.  Finally, as applied to chat, dialog acts could be 

used to help separate interleaved conversation threads. 

With this definition of dialog acts and their potential applications introduced, we 

now turn to a brief overview of Stolcke et al’s in-depth research concerning dialog act 

modeling in conversational speech and its subsequent adaptation to two computer-

mediated communication genres.   
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a. Spoken Conversation 

Stolcke et al used dialog acts to model the utterances within 

conversational speech [17].  The conversational speech domain was represented by 1,155 

conversations (to include both sound waveforms and transcribed text) drawn from the 

Switchboard corpus of spontaneous human-to-human telephone speech.  The 42 dialog 

acts along with an example and its frequency of occurrence within Switchboard are 

presented in Table 5.   
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Tag Example Percent 

Statement Me, I’m in the legal department. 36% 

Backchannel/Acknowledge Uh-huh. 19% 

Opinion I think it’s great. 13% 

Abandoned/Uninterpretable So, -/ 6% 

Agreement/Accept That’s exactly it. 5% 

Appreciation I can imagine. 2% 

Yes-No-Question Do you have to have any special training? 2% 

Non-Verbal <Laughter>,<Throat_clearing> 2% 

Yes Answers Yes. 1% 

Conventional-Closing Well, it’s been nice talking to you. 1% 
Wh-Question What did you wear to work today? 1% 
No Answers No. 1% 

Response Acknowledgement Oh, okay. 1% 
Hedge I don’t know if I am making any sense or not. 1% 

Declarative Yes-No-Question So you can afford to get a house? 1% 
Other Well give me a break, you know. 1% 

Backchannel-Question Is that right? 1% 
Quotation You can’t be pregnant and have cats. 0.5% 

Summarize/Reformulate Oh, you mean you switched schools for the kids.  0.5% 

Affirmative Non-Yes Answers It is. 0.4% 

Action-Directive Why don’t you go first 0.4% 

Collaborative Completion Who aren’t contributing. 0.4% 

Repeat-Phrase Oh, fajitas 0.3% 

Open-Question How about you? 0.3% 

Rhetorical-Questions Who would steal a newspaper? 0.2% 

Hold Before Answer/Agreement I’m drawing a blank. 0.3% 

Reject Well, no 0.2% 

Negative Non-No Answers Uh, not a whole lot. 0.1% 

Signal-Non-Understanding Excuse me? 0.1% 
Other Answers I don’t know. 0.1% 

Conventional-Opening How are you? 0.1% 
Or-Clause or is it more of a company? 0.1% 

Dispreferred Answers Well, not so much that. 0.1% 
3rd-Party-Talk My goodness, Diane, get down from there. 0.1% 

Offers, Options, & Commits I’ll have to check that out 0.1% 
Self-Talk What’s the word I am looking for 0.1% 

Downplayer That’s all right. 0.1% 
Maybe/Accept-Part Something like that < 0.1% 

Tag-Question Right? < 0.1% 

Declarative Wh-Question You are what kind of buff? < 0.1% 

Apology I’m sorry. < 0.1% 

Thanking Hey, thanks a lot < 0.1% 

Table 5.   42 Dialog Act Labels for Conversational Speech (From [17]) 
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Stolcke et al’s model detects and predicts dialog acts based on lexical, 

collocational, and prosodic (e.g. sound waveform pitch, duration, energy, etc) features of 

the utterance as well as the overall discourse coherence of the sequence itself [17].  This 

overall discourse structure was treated as a Hidden Markov Model, with the specific 

utterances representing the observation sequence “emitted” from the dialog act state 

sequence.  Constraints for the likely dialog act sequence were modeled with dialog act n-

grams, which were combined with n-grams, decision trees, and neural networks modeling 

lexical and prosodic features of the dialog act itself.  Stolcke et al achieved accuracy of 

results of 65% (based on automatic speech recognition of words combined with prosody 

clues) and 71% (based on word transcripts), compared to a chance baseline accuracy of 

35% and human accuracy of 84% [17].   

b. Computer-Mediated Communication 

Drawing from Stolcke et al, Wu et al used the dialog act methodology to 

model the postings in online chat conversations [18].  For their research, the chat domain 

was represented by nine different Internet Relay Chat (IRC) conversations containing a 

total of 3,129 posts.  The 15 dialog acts along with an example and its frequency of 

occurrence within the data set are presented in Table 6.   
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Tag Example Percent 
Statement I’ll check after class 42.5% 

Accept I agree 10.0% 
System Tom [JADV@11.22.33.44] has left#sacbal 9.8% 

Yes-No-Question Are you still there? 8.0% 
Other ********** 6.7% 

Wh-Question Where are you? 5.6% 
Greet Hi, Tom 5.1% 

Bye See you later 3.6% 
Emotion lol 3.3% 

Yes-Answer Yes, I am. 1.7% 

Emphasis I do believe he is right. 1.5% 
No Answer No, I’m not. 0.9% 

Reject I don’t think so 0.6% 

Continuer And … 0.4% 
Clarify Wrong spelling 0.3% 

Table 6.   15 Post Act Classifications for Chat (From [18]) 

Wu et al’s post act classifications were based on a set of rule templates 

learned via Brill’s Transformational Based Learning algorithm [18].  Based on nine-fold 

cross validation of all posts, Wu achieved an average accuracy of 77.56% (maximum = 

80.89%, minimum = 71.20%).  In Chapter III, we discuss how we used the Wu et al tag 

set (with minor interpretation differences) to perform chat dialog act modeling on our 

data set of chat posts. 

Ivanovic also drew heavily from Stolcke et al’s work to assign dialog acts 

to instant messaging (IM) sessions [3].  Unlike Stolcke and Wu’s domains, which were 

conversational in nature, Ivanovic’s domain was task-oriented dialog represented by 

online shopping assistance provided by the MSN Shopping web site.  Specifically, the 

data set consisted of nine chat sessions, totaling 550 utterances and 6,500 words.  The 12 

IM dialog acts along with an example and its frequency of occurrence within the data set 

are presented in Table 7. 
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Tag Example Percent 
Statement I am sending you the page now 36.0%
Thanking Thank you for contacting us 14.7%

Yes-No-Question Did you receive the page? 13.9%
Response-Ack Sure 7.2%

Request Please let me know how I can assist 5.9%
Open-Question how do I use the international version? 5.3%

Yes-Answer yes, yeah 5.1%
Conventional-Closing Bye Bye 2.9%

No-Answer no, nope 2.5%
Conventional-Opening Hello Customer 2.3% 

Expressive haha, :-), grr 2.3% 
Downplayer my pleasure 1.9% 

Table 7.   12 Dialog Act Labels for Task-Oriented Instant Messaging (From [3]) 

In contrast to Wu et al, who applied a single dialog act to each post, 

Ivanovic segmented dialog acts at the utterance level [3].  As such, utterances and their 

associated dialog act can either span multiple posts or reside next to zero or more 

utterances within a single post.  After utterance segmentation, Ivanovic resynchronized 

the utterances since IM (like chat) exhibits a certain amount of asynchronicity due to the 

technology associated with posting.  Ivanovic’s machine-learning model combined the 

Naïve Bayes classifier with n-grams (n= 1, 2 and 3).  Based on nine-fold cross validation 

of all utterances, Ivanovic achieved an average bigram (n = 2) model accuracy of 81.6% 

(maximum = 92.4%, minimum = 75.0%) [3]. 

With our review of chat and associated NLP applications complete, we 

now turn to the technical details associated with our research. 
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III. TECHNICAL APPROACH 

In this chapter we will cover the technical approach we used in building the 

corpus as well as the technical details associated with both part-of-speech tagging and 

chat dialog act classification methodologies. 

A. BUILDING THE CORPUS 

In this section we will cover the details associated with building the corpus, to 

include its conversion to an Extensible Markup Language (XML) format; subsequent 

masking of participant names for privacy considerations; part-of-speech and chat dialog 

act labeling decisions; and the general bootstrapping process.   

1. Data Conversion to XML 

As mentioned earlier, Lin collected open topic chat dialog samples from five 

different age-oriented chat rooms [11].  These samples, taken over the course of 26 

sessions in the fall of 2006, included session log on information as well as 477,835 posts 

made by the users as well as automated posts made by both the chat room system as well 

as “chatbots”.  Chatbots are automated user software independent of the chat room 

system that assist human participants, provide entertainment to the chat room, etc.   

In addition to the sessions, Lin collected the chat room profiles on each of the 

approximately 3,200 users participating in the session dialog samples.  The profiles often 

(but not always) contained a variety of information on the individual user, including age, 

gender, occupation, and location.  The profile files were provided to us in an HTML 

format.   
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In order to enhance accessibility to this information for future researchers, we 

converted both the sessions as well as the profiles to an XML format using the Python 

ElementTree module [19].  In particular, we created two versions of the corpus.  The first 

version included the entirety of the 26 sessions as well as a single file containing all 

users’ age, gender, occupation, and location information, as available.  In both the 

sessions and the profile file, the users were referred to by the original screen names 

collected by Lin.   

2. Privacy Masking 

In the second version of the corpus, we took a contiguous sample of 

approximately 700 posts from 15 of the 26 sessions each.  In this version, however, we 

altered the users’ names in each session such that they were referred to by a standard 

mask with a key representing the order they joined the session.  For example, 

“killerBlonde51” would become “10-19-40sUser112” in the session collected from the 

40s-oriented chat room on October 19; “11-08-40sUser23” in the session collected on 

November 8; and so on.  Similarly, we sanitized the profile file with a single mask as 

well as a pointer to a list of masks that the particular user was referred to in the various 

session files.  Using the previous example, killerBlonde51 would be referred to as 

“user57” in the profile file, referencing a list containing 10-19-40sUser112, 11-08-

40sUser23, and any other session masks that killerBlonde51 participated in.  To date, we 

have privacy-masked 10,567 of the 477,835 posts in this manner.   

Why did we decide to perform privacy masking?  If we are to make the corpus 

available to the larger research community, this must be accomplished.  It was 

straightforward to replace the user’s screen name in both the session samples as well as 

the profile file.  However, more often than not, users were referred to by variations of 

their screen names in other users’ posts.  For example, other users would refer to 

killerBlonde51 as “killer,” “Blondie,” “kb51,” etc.  Although regular expressions can 

assist in the masking task, ultimately 100% masking required us to hand-verify that the 

appropriate masks had been applied in every post.   
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We should note that although masking is essential to ensure privacy, it results in a 

loss of information.  For example, the way to which users are referred often conveys 

additional information, for example, familiarity and emotion; this information is lost in 

the masking process.  In addition, we observed that a user’s screen name would become a 

topic of conversation independent from the original user; again, the origin of this 

conversation thread is lost in the masking process. 

Once we complete the masking process, we then turned to tokenizing the posts of 

the privacy-masked version of the corpus and annotating the tokens with part-of-speech 

tags. 

3. Part-of-Speech (POS) Tagging 

As discussed in Chapter II, several POS-tagged corpora in many languages are 

available to NLP researchers.  The corpora we used to help train various versions of the 

taggers are contained within the Linguistic Data Consortium’s Penn Treebank 

distribution [20].  The first corpus, referred to as Wall Street Journal (WSJ), contains 

over one million POS-tagged words collected in 1989 from the Dow Jones News Service.  

The second, briefly introduced in Chapter II and referred to as Switchboard, was 

originally collected in 1990 and contains 2,430 transcribed, POS-tagged, two-sided 

telephone conversations among 543 speakers from all areas of the United States.  Each 

conversation averaged about six minutes in length, totaling 240 hours of speech and 

about three million words total.  The third, also discussed in Chapter II and referred to 

from here on as Brown, consists of over one million POS-tagged words collected from 15 

genres of written text originally published in 1961.   
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BES  “’s” contraction for “is” * 
CC  Coordinating conjunction 
CD  Cardinal number 
DT  Determiner 
EX  Existential there 
FW  Foreign word 
HVS  “’s” contraction for “has” * 
IN  Preposition/subordinating 
  conjunction 
JJ  Adjective 
JJR  Adjective, comparative 
JJS  Adjective, superlative 
LS  List item marker 
MD  Modal 
NN  Noun, singular or mass 
NNS  Noun, plural 
NP  Proper noun, singular 
NPS  Proper noun, plural 
PDT  Predeterminer 
POS  Possessive ending 
PRP  Personal pronoun 
PP$  Possessive pronoun 
RB  Adverb 
RBR  Adverb, comparative 
RBS  Adverb, superlative 
RP  Particle 

SYM  Symbol  
TO  “to” 
UH  Interjection 
VB  Verb, base form 
VBD  Verb, past tense 
VBG  Verb, gerund or present 
  participle 
VBN  Verb, past participle 
VBP  Verb, non-3rd person 
  singular present 
VBZ  Verb, 3rd person singular 
  present 
WDT  Wh-determiner 
WP  Wh-pronoun 
WP$  Possessive wh-pronoun 
WRB  Wh-adverb 
$  Dollar Sign ($)) 
#  Pound sign (#) 
“  Left quote (‘ or “) 
”  (Right quote (“ or “) 
(  Left parenthesis ([, (, {) 
)   Right parenthesis (], ), }) 
,   Comma 
.   Sentence final punc (. ! ?) 

:   Mid-sentence punc (: ; … -) 

Table 8.   Penn Treebank Tagset (From [20]) *Note: BES and HVS tags were not used in 
WSJ, but were used in Switchboard 

All corpora were tagged with the Penn Treebank tag set shown in Table 8. 

Although the posts were also tagged using the Penn Treebank tag set and associated 

tagging guidelines [20], we had to make several decisions during the process that were 

unique to the chat domain.  The first class of decisions regarded the tagging of 

abbreviations such as “LOL” (Laughing Out Loud) and emoticons such as “:-)” (a 

“smiley face” rotated on its side) frequently encountered in chat.  Since these expressions 

conveyed emotion, we treated them as individual tokens and tagged them as “UH” 

(interjections).   
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The second class of decisions involved the tagging of sequences of non-

alphanumeric characters that were not emoticons, but served a specific (formal or 

informal) purpose within the domain.  First, based on the way the sessions were 

collected, user commands to both the chat room system and chatbots as well as  

information provided by the system and chatbots were often preceded by either the token 

“.” or “!”.  Since these do not function as the Penn Treebank tag “.” (sentence final 

punctuation), we instead tagged them as “SYM”.  Second, we tagged variants of tokens 

representing pointers such as “<--“ and “^” as “PRP” (personal pronoun), since they were 

used to indicate a particular user (often, the user making the post itself).  Finally, we 

tagged the token “/” as “CC” (coordinating conjunction), since it was often used in place 

of traditional conjunctions such as “and” and “or”. 

The third class involved words that, although would be considered misspelled by 

traditional written English standards, were so frequently encountered within the chat 

domain that we treated them as correctly spelled words and tagged them according to the 

closest corresponding word class.  As an example, the token “hafta” (when referring to 

“have to”), if treated as a misspelling, might be tagged as “^VBP^TO”, with the “^” 

referring to a misspelling and “VBP” and “TO” referring to “verb, non-3rd person 

singular present” and the word “to”, respectively.  However, since it was so frequently 

encountered in the chat domain, we often tagged it as “VBP” based on its usage.  

Appendix B contains a list of such words encountered in the privacy-masked version of 

the corpus along with their corresponding tag(s). 

The final class of decisions involved words that were just plain misspelled.  In 

this case, we tagged those words with the misspelled version of the tag.  As an example, 

we tagged “intersting” (when referring to “interesting”) as “^JJ”, a misspelled adjective.   

In conjunction with part-of-speech tagging, we classified each chat post in the 

privacy-masked corpus with a dialog act.  We now turn to the details associated with this 

activity. 
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4. Chat Dialog Act Classification 

We labeled each of the 10,567 privacy-masked posts using Wu et al’s 15 post act 

categories [18], many of which were derived in part from the Stolcke et al tag set [17].  

The chat dialog act classification categories as well as an example of each taken from the 

privacy-masked corpus are shown in Table 9. 

Classification Example 
Accept yeah it does, they all do 

Bye night ya'all. 
Clarify i meant to write the word may..... 

Continuer and thought I'd share 
Emotion lol 

Emphasis Ok I'm gonna put it up ONE MORE TIME 10-19-30sUser37 
Greet hiya 10-19-40sUser43 hug 

No Answer no I had a roomate who did though 
Other sdfjsdfjlf 

Reject u r not on meds  
Statement well i thought you and I will end up together  :-(  

System JOIN 
Wh-Question 11-08-20sUser70 why do you feel that way? 
Yes Answer why yes I do 10-19-40sUser24, lol 

Yes/No Question cant we all just get along 

Table 9.   Post Dialog Act Classification Examples 

These examples highlight the complexity of the task at hand.  First, we should 

note that we classified posts into only one of the 15 categories.  At times, more than one 

category might apply.  In addition, the Wh-Question example does not start with a wh-

word, while the Yes Answer does start with a wh-word.  Also, notice that the Yes/No 

Question does not include a question mark.  Finally, the Statement example contains a 

token that conveys an emotion, “:-(”.  Taken together, these examples highlight the fact 

that more than just simple regular expression matching is required to classify these posts 

accurately.  The specific interpretations we used for each chat dialog act class now 

follow. 
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Statement chat dialog acts predominantly include descriptive, narrative, and 

personal statements (Statements as defined by Stolcke et al) as well as other directed 

opinion statements (Stolcke et al’s Opinion) [17].  In reality, though, Statement is a catch-

all category, and includes other dialog act forms not covered by the other 14 chat dialog 

acts. 

System chat dialog acts, as originally defined by Wu et al, referred to posts 

generated by the chat room software [18].  We expanded the notion of the system dialog 

act to include commands made by the user to both the chat room system as well as to 

personal chatbots.  Finally, we also classified chatbot responses as system dialog acts. 

The Yes/No Question chat dialog act is simply a question that can have “yes” or 

“no” as an answer.  Similarly, the Wh-Question chat dialog act is a question that includes 

a wh-word (who, what, where, when, why, how, which) as the argument of the verb.  

Both correspond to Stolcke et al’s Yes-No Question and Wh-Question categories, 

respectively [17].  However, both categories also include some dialog acts that Stolcke et 

al would define as Declarative, Back Channel, Open, and Rhetorical Questions. 

As in Stolcke et al’s definition for the category, Yes Answer chat dialog acts 

include variations on the word “yes”, when acting as an answer to a Yes/No Question.  No 

Answers are similarly defined [17].   

Accept and Reject chat dialog acts, as in Stolcke et al’s definition, all mark the 

degree to which the poster accepts some previous statement or opinion [17].   

Greet and Bye chat dialog acts are defined as their name implies, and conform to 

Stolcke et al’s Conventional Opening and Closing categories [17].   

We interpreted Clarify chat dialog acts as posts that refer to an earlier ambiguous 

or unintelligible post made by the same user.  As such, Clarify dialog acts serve to clarify 

the earlier post’s meaning.   

Continuer chat dialog acts serve to continue an earlier post of the current poster, 

and as such often correspond to Zitzen and Stein’s split turn phenomena as described in 

Chapter II [5]. 
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As the name implies, Wu et al’s Emotion chat dialog acts express the poster’s 

feelings, and are often characterized by the words that make the chat domain unique from 

tradition written domains, to include emoticons like “:-)” as well as chat abbreviations 

like “LOL” [18]. 

Emphasis chat dialog acts are used by the poster when they want to emphasize a 

particular point.  As defined by Wu, they include the use of “really” to emphasize a verb, 

but also include the use of all caps as well as exclamation points [18].   

Finally, the Other chat dialog act was reserved for posts where we could make no 

clear dialog act interpretation of any kind for the post.   

We will now turn to the process we used to assign chat dialog act labels and part-

of-speech tags to the privacy-masked chat corpus. 

5. Bootstrapping Process 

With the labeling guidelines decided upon, we next labeled all 10,567 tokenized 

posts with their corresponding part-of-speech tags and dialog act classes via a 

bootstrapping process.  Rather than hand-tagging each individual post, we crafted a POS 

tagger trained on the Penn Treebank corpora, and combined with a regular expression 

that identified privacy–masked user names and emoticons, automatically tagged 3,507 

tokenized posts.  We discuss the details on the tagger approach in Chapter III, Section C.  

Similarly, we used simple regular expression matching to assign an initial chat dialog act 

to each post.  We then hand-verified each token’s tag within a post and as necessary 

changed it to its “correct” tag.  Similarly, we hand-verified each post’s dialog act 

classification and as necessary changed it to its “correct” label.   

We then used the newly hand-tagged chat data, along with the Treebank corpora, 

to train a new tagger that automatically tagged the remaining 7,060 posts.  Similarly, we 

used a back-propagation neural network trained on 21 features of the dialog-act labeled 

posts to automatically classify the remaining 7,060 posts.  We discuss details of the 

neural network approach in Chapter III, Section C.  Again, we hand-verified and as 

necessary corrected each token’s tag (or post’s dialog act label) in the new data set.  
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Ultimately, we annotated a total of 10,567 privacy-masked posts, representing 45,068 

tokens, with part-of-speech and dialog act information. 

It is important to note that we did not perform an inter-annotator agreement 

assessment on either the part-of-speech tags or chat dialog act classifications.  This is 

because only one person (the author) performed the hand-verification task described 

earlier.  As such, if the privacy-masked corpus is to be expanded further in the future, we 

highly recommended multiple annotators participate so that an inter-annotator assessment 

can be performed.   

With our discussion of the corpus generation methodology complete, we now turn 

to a description of the machine leaning methods we used to automatically assign part-of-

speech and dialog act information. 

B. CHAT PART-OF-SPEECH TAGGING METHODOLOGY 

Before discussing the specific part-of-speech tagger experiments we performed, it 

is first necessary to provide a brief overview of their mathematical foundations.  The 

machine-learning approaches we investigated for part-of-speech tagging can be grouped 

into three categories: 1) Lexical n-gram taggers employing back off; 2) Hidden Markov 

Model taggers; and 3) Brill taggers.  Our specific implementation of these approaches 

made use of the corresponding modules provided in the Natural Language Toolkit 

distribution for the Python programming language [21].  We now discuss each approach 

in turn. 

1. Lexicalized N-Grams with Back off 

The foundation for all lexicalized n-gram tagging approaches is the Markov 

assumption, i.e. we can predict the probability of the current event based on looking at 

what has happened not too far in the past.  As a simplified example, let us consider a 

Major League Baseball player.  One can make a fairly accurate prediction on the chance 

he will get a hit at his current at bat based on his batting performance over the 

immediately preceding few games.  One does not necessarily make a better prediction 

knowing his batting performance for the entire season, or even his entire career.  Of 
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course, there are many other variables involved in this example, e.g. the pitcher he is 

facing, his  current health, etc.  Nevertheless, this is the essence of the Markov 

assumption, and is used in lexical n-gram tagging models where n stands for how many 

words (minus one) to look into the past to help make a tagging decision.   

A general discussion of lexicalized n-gram taggers can be found in [14] and [22].  

Lexicalized n-grams formed the foundation for our basic tagger configuration which 

involved training a bigram (n = 2) tagger on a POS-tagged training set, backing off to a 

similarly trained unigram (n = 1) tagger, backing off to the maximum likelihood estimate 

(MLE) tag for the training set.  Throughout the remainder of this thesis we will 

subsequently refer to this approach as the bigram back off tagger.   

Working backwards, the MLE tag is the most common tag within a training set, 

and is given by 

 
[ ]arg max count( )MLE

t tagSet
t t

∈
=

 
A unigram tagger assigns the most probable POS tag to the ith word in a sequence based 

on its occurrence in the training data. 

 ( )ˆ arg max | i
t tagSet

t P t w
∈

= ⎡ ⎤⎣ ⎦  

Finally, a bigram tagger assigns the most probable POS tag to the ith word in a sequence 

not only based on the current word, but also the previous word as well as the previous 

word’s POS tag. 

 ( )1 1ˆ arg max | , ,i i i
t tagSet

t P t w t w− −
∈

= ⎡ ⎤⎣ ⎦  

Thus, our tagging approach works as follows:  The tagger will first attempt to use 

bigram information from the training set.  If no such bigram information exists, it will 

then back off to unigram information from the training set.  If no such unigram 

information exists, it will finally back off to the MLE tag for the training set.  The general 

approach is illustrated in Figure 1.  
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tagger

Unigram
tagger

Regex
tagger

(optional)

MLE

If instance not 
found in training 
set, back off to…

If instance not 
found in training 
set, back off to…

Bigram
tagger

Unigram
tagger

Regex
tagger

(optional)

MLE

If instance not 
found in training 
set, back off to…

If instance not 
found in training 
set, back off to…

 
Figure 1.   Bigram Back Off Tagger Approach 

In addition to the basic bigram back off approach, we investigated a number of 

variants.  The first variant, also illustrated in the previous figure, is incorporating a 

regular expression tagger to tag unseen instances of words via a set of regular expressions 

prior to backing off to the training set’s MLE.  For example, in the privacy-masked 

version of the chat corpus, all users are referred to by a standard convention, specifically, 

the name of the session file, followed by “User”, and finally followed by a number 

representing when they joined the chat session.  A simple regular expression can catch 

this naming convention, and thus correctly tag a user’s privacy-masked name as “NNP” 

(proper noun, singular) in the event it was never observed in the training set.  Of course, 

this can be expanded, e.g. using regular expressions to capture an unseen web address 

(and tag it as “NNP”), an unseen word ending in “ing” (and tag it as “VBG”, or gerund 

verb), and so on.   

The second variant we implemented involved training a bigram back off tagger on 

two different domains, for example, chat and the Penn Treebank.  One way to accomplish 

this is to train the various n-gram segments of the tagger on both domains at the same 

time.  However, if the training sets of the domains are of significantly different sizes 

(which is certainly the case with chat and the Penn Treebank), then either the larger 

domain must be sampled from to ensure it is the same size as the smaller (not preferred), 

or the smaller domain must be “multiplied” so that it is the same size as the larger.  



 40

Alternatively, one can “chain” two bigram back off taggers together, with each bigram 

back off tagger trained on a single domain.  This approach is illustrated in Figure 2.  In 

the end, we investigated both multi-domain training approaches. 

Bigram tagger 
trained on chat

Unigram
chat

Bigram
All Treebank

Unigram
All Treebank

Regex
tagger

Chat MLE 
(‘UH’)

Bigram tagger 
trained on chat

Unigram
chat

Bigram
All Treebank

Unigram
All Treebank

Regex
tagger

Chat MLE 
(‘UH’)  

Figure 2.   Multi-Domain Bigram Back Off Tagger Example 

With our discussion of the bigram back off tagger completer, we now turn to a 

more sophisticated tagging approach, which uses a Hidden Markov Model to make its 

tagging decisions. 

2. Hidden Markov Models 

As discussed in the previous section, bigram taggers take advantage of a word’s 

context (the preceding word and its part-of-speech tag) to assign its part-of-speech tag.  

Hidden Markov Model- (HMM-) based taggers take this notion of context one step 

further by attempting to choose the best tags for an entire sequence of words.  HMMs 

have been applied to a number of natural language processing tasks, including speech 

recognition, dialog act classification, and part-of-speech tagging.  Nice overviews of 

HMMs are provided in [13] and [14].  Our brief overview of HMMs and their application 

to decoding follows that of Manning and Schütze [13]. 

An HMM is specified by a five-tuple (T, W, A, B, П), where T and W are a set of 

states and output alphabet, and П, A, and B are the probabilities for the initial state, state 

transitions, and symbol (from the output alphabet) emissions.  As mentioned previously, 

our task is, given an observation sequence of symbols O and a language model 

( ), ,A Bμ = Π  (obtained from the training set), determine the most probable sequence of 

states X that generated O.  We can represent the space of potential state sequences with a 

lattice, which in this case is a two dimensional array of states versus time.  Thus, we can 
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compute the probabilities of being at each state at each time in terms of the probabilities 

for being in each state at a preceding time.  The Viterbi algorithm uses dynamic 

programming to calculate the most probable path through the lattice, and is presented in 

Figure 3. 
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( )LGORITHM ITERBI , ( , , , , )A V O HMM T W A B= Π  
Notation: 
 Set of states:    { }1 2, ,... NT t t t=  

 Output alphabet:   { }1 2, ,... NW w w w=  

 Initial state probabilities:  { },i i TπΠ = ∈  

 State transition probabilities:  { }, ,ijA a i j T= ∈  

 Symbol emission probabilities: { }, , ,ijkB b i j T k W= ∈ ∈  

 Language model:   ( ), ,A Bμ = Π  

 State sequence:   ( ) { }1 1,...   : 1,...S sX X X X T N+= →  

 Output sequence:   ( )1,...   S sO o o o W= ∈  
 
Find: The most probable state sequence, ( )ˆ arg max | ,

X
X P X O μ=  

To do this, it is sufficient to maximize over a fixed observation sequence 
 ( )ˆ arg max , |

X
X P X O μ=  

Define: ( ) ( )
1 1

1 1 1 1...
max ... , ... , |

s
j s s sX X

s P X X o o X jδ μ
−

− −← =  

( )j sδ  stores for each point in the lattice the probability of the most probable path that 

leads to that node.  The corresponding variable ( )j sψ  then records the node of the 
incoming arc that led to this most probable path.   
 
1. Initialization 

 ( )1 ,   1j j j Nδ π← ≤ ≤  
2. Induction 

 
( ) ( )( )

1
1 max ,   1

sj i ij ijoi N
s s a b j Nδ δ

≤ ≤
+ ← ≤ ≤

 
3. Termination and path readout (by backtracking).  The most likely state sequence is 

worked out from the right backwards 

  
( )1

1

ˆ arg max 1S i
i N

X Sδ+
≤ ≤

= +
 

  
( )

1
ˆ

ˆ 1
ss XX sψ
+

= +
 

( ) ( )
1

ˆ max 1ii N
P X Sδ

≤ ≤
= +  

Return X̂  

Figure 3.   Viterbi Algorithm for Hidden Markov Model Decoding (After [13]) 
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For the part-of-speech tagging problem, the task is to determine the most probable 

part-of-speech tag sequence (the state sequence X) based on the word sequence (the 

observation sequence O).  Our training set of tagged data permit us to determine he 

language model’s initial state, transition state, and symbol emission probability 

distributions.  By working through the Viterbi algorithm, we can find the most probable 

tag sequence given the word sequence. 

Unlike our bigram back off tagger approach, where we ultimately handled an 

unseen token by tagging it as the MLE for the corpus, for the Hidden Markov Model we 

prefer not to deal with zero counts.  Unseen tokens in the training set pose two issues.  

First, it underestimates the actual probability, since it is always possible that our training 

set did not include an example.  Second, though, this term will come to dominate the 

overall classification, since this one unseen feature value will require multiplying all 

other conditional probability terms with zero. 

To avoid this problem, we can smooth the probability distributions used in the 

Hidden Markov Model tagger language model, assigning a fraction of the observed 

words’ probability mass to the unseen words and thus providing a better estimate of the 

true probability distributions.  A variety of smoothing approaches are available; 

descriptions, advantages, and disadvantages can be found in [14], [13], and [22].  For our 

Hidden Markov Model tagger, we decided to use the most basic approach, Laplacian 

smoothing, which is described next. 

Laplacian smoothing, also known as Add-One smoothing, adds one to the count 

for unseen instances (in our case, word tokens) in the training set, redistributing the 

probability mass by dividing by both the total number of tokens N along with the total 

number of word types, or “vocabulary size” V 

 1( ) i
i

cp w
N V
+

=
+

 

With our discussion of the mathematical foundation for the HMM tagger 

complete, we now turn to the final type of tagger evaluated, know as Brill’s 

Transformational-Based Learning tagger. 
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3. Brill Transformational-Based Learning Tagging 

Brill’s Transformational-Based Learning tagger, here after referred to as the Brill 

tagger, relies on rules to determine what tags should be assigned to what words.  Those 

rules are learned based on their usefulness when applied to a training set.  Overviews of 

this approach can be found in [13], [14], [15], and [22].  Our presentation follows that of 

Brill [15]. 

The training set for a Brill tagger consists of a tagged corpus as well as baseline 

tagger.  The baseline tagger can be as simple as a unigram tagger, i.e. assigning a word its 

most frequent tag from the tagged corpus.  The Brill learning algorithm then constructs a 

set of tagging transformations, or rules, and employs them in order.  Specifically, it 

employs the rule that applies to the most cases, then chooses a more specific rule that 

updates a fewer number of tags, and so on.  As the rules get more and more specific, they 

may end up changing the tags of words that had already been changed by a previous rule.  

In essence, the Brill tagger makes an initial set of educated guesses, and then goes back 

and fixes any mistakes made earlier. 

The possible transformations are based on a set of templates, which the Brill 

tagger evaluates for every possible combination, and applies those that correct the most 

errors.  Learning stops when no more transformations can be found that can reduce the 

error based on a given threshold. For the nonlexicalized version of Brill’s tagger, the 

transformation templates depicted in Table 10 are available.  
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Change tag a to b when: 

1. The preceding (following) word is tagged z. 

2. The word two before (after) is tagged z. 

3. One of the two preceding (following) words is tagged z. 

4. One of the three preceding (following) words is tagged z. 

5. The preceding word is tagged z and the following word is tagged w. 

6. The preceding (following) word is tagged z and the word two before 

(after) is tagged w. 

where a, b, z, and w are variables over the part-of-speech tag set. 

Table 10.   Nonlexical Templates for Part-of-speech Tagging  (From [15]) 

With these templates, the transformation learning algorithm shown in Figure 4 is 

as follows. 
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( )LGORITHM RANSFORMATION EARNING , ,A T L initialTagger templates trainingCorpus
 
1.  Apply initialTagger to trainingCorpus 
2.  While transformations can still be found, Do 
 For fromTag = 1tag  to ntag  
 
  For toTag = 1tag  to ntag  
 
   For trainingCorpus.position = 1 to trainingCorpus.size 
 
    If  correctTag(trainingCorpus.position)==toTag ∧  
     currentTag(trainingCorpus.position)==fromTag 
      numGoodTransformations(tag(trainingCorpus.position-1))++ 
 
    Else If correctTag(trainingCorpus.position)==fromTag ∧  
      currentTag(trainingCorpus.position)==fromTag 
       numBadTransformations(tag(trainingCorpus.position-1))++
 
   find maxT  (=numGoodTransformations(T)- numBadTransformations(T)) 
 
   If this is the best scoring rule found yet Then store as best rule: 
    Change tag from fromTag to toTag if previous tag is T 
 
 Apply best rule to trainingCorpus 
 
 Append best rule to ordered list of transformations 
 

Figure 4.   Transformation Learning Algorithm for Brill Tagging (After [15]) 

The Brill tagger can be extended to include lexicalized templates as well.  In other 

words, instead of just considering changing a tag from “a” to “b” based on the 

surrounding tags, it can also consider the surrounding words as well.  Using both lexical 

and nonlexical templates, the transformation learning algorithm can exploit the complex 

interdependencies that exist between words and tags.   

Now that we have covered the various approaches we used in chat part-of-speech 

tagging, we now describe how we set up the experiments to assess the effectiveness of 

each approach.   
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4. Part-of-speech Tagging Experimental Approach 

We divided the privacy-masked chat corpus into 30 different training/test 

configurations, randomly selecting 10% of the corpus (1,060 posts) to serve as the test 

set, and the remaining 90% to serve as the training set.  Collecting 30 different 

training/test configuration samples from the corpus permits us to compare the 

performance of the different taggers based on their overall accuracy, defined as 

 Number of tokens tagged correctlyaccuracy
Total number of tokens

=  

As described above, the various taggers we investigated can be grouped into the 

following categories: 1) N-gram back off taggers trained on various combinations of chat 

and/or Penn Treebank data; 2) HMM taggers trained on chat data and/or samples from 

the Penn Treebank; and 3) Brill taggers with various taggers serving as input and 

subsequently trained with chat data and/or samples from the Penn Treebank.  With our 

discussion of the experimental approach for part-of-speech tagging complete, we now 

turn to our methodology for chat dialog act classification. 

C. CHAT DIALOG ACT CLASSIFICATION METHODOLOGY 

As with our part-of-speech tagging discussion, before we cover the chat dialog act 

classification experiments, it is first necessary to provide a brief overview of their 

mathematical foundations.  First we cover the specific features we chose to measure for 

each post as well as our rationale.  Then we detail the two main learning approaches we 

used in dialog act classification: 1) Back-propagation neural networks; and 2) The Naïve 

Bayes classifier.   

1. Feature Selection 

The machine-learning algorithms we used to automatically label a post with a 

dialog act class required a set of features on which to base classification.  In Table 11 we 

present the initial set of features, along with their definitions and a brief rationale on why 

we selected them. 
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Feature Definition Rationale 
f0 Number of posts ago the poster last posted Indicator for a Continuer act 
f1 Number of posts ago the poster made a spelling error Indicator for a Clarify act 
f2 Number of posts ago that a post contained a '?' but no 

WRB or WP POS tag 
Indicator for a Yes / No Answer acts 

f3 Number of posts in the future that contained a Yes or 
No word 

Indicator for a Yes/No Question act 

f4 Number of posts ago that contained a Greet word Indicator for a Greet act 
f5 Number of posts in the future that contained a Greet 

word 
Indicator for a Greet act 

f6 Number of posts ago that a post contained a Bye word Indicator for a Bye act 
f7 Number of posts in the future that contained a Bye 

word 
Indicator for a Bye act 

f8 Number of posts ago that a post was a JOIN Indicator for a Greet act 
f9 Number of posts in the future that a post is PART Indicator for a Bye act 

f10 Total number of words in post Longer posts may be Statements and 
Questions, shorter posts may be Emotions and 
Greets/Byes, etc. 

f11 First word is a conjunction, preposition, or ellipses 
(POS tag of 'CC', 'IN', or ':') 

Indicator for a Continuer act 

f12 A word contains emotion variants such as lol, ;-), etc Indicator for an Emotion act 
f13 A word contains hello or variants Indicator for a Greet act 
f14 A word contains goodbye or variants Indicator for a Bye act 
f15 A word contains yes or variants Indicator for Yes or Accept acts 
f16 A word contains no or variants Indicator for No or Reject acts 
f17 A word POS tag is WRB or WP Indicator for a Wh-Question act 
f18 A word contains one or more '?' Indicator for Wh- or Yes/No Question acts 
f19 A word contains one or more '!' (but not a '?') Indicator for an Emphasis act 
f20 A word POS tag is 'X' Indicator for an Other act 
f21 A word is a system command (. or ! with SYM POS 

tag) 
Indicator for a System act 

f22 A word is a system word, e.g. JOIN, MODE, 
ACTION, etc 

Indicator for a System act 

f23 A word is an 'any' variant, e.g. 'anyone', 'n e', etc Indicator for a Yes/No Question act 
f24 A word is in all caps, but not a system word like JOIN Indicator for an Emphasis act 
f25 A word is an 'even' or 'mean' variant Indicator for a Clarify act 
f26 Total number of users currently in the chat room More users may stretch out distances between 

adjacency pairs  

Table 11.   Initial Post Feature Set (27 Features) 
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The first ten post features (f0-f9) in the table are based on the posts surrounding it, 

specifically, the distance to posts with particular features, with the rationale that 

surrounding posts should give a hint to the nature of the post itself.  For example, 

Continuer dialog acts might be more likely to follow fairly closely to when the user last 

posted, and Yes/No Answers should follow fairly closely to posts with Yes/No Question 

characteristics.  Note, though, that if a particular post was not found in its vicinity, we 

assigned it the maximum session length in the privacy-masked chat corpus, i.e., 706 posts 

(all sessions ranged from 687 to 706 posts).  For example, at the beginning of a session, 

you would not be able to find the last time a poster posted (even though they may have 

posted just before the session was recorded).  Note that this would result in an “edge 

effect” at the beginning and ending of the sessions, thus decreasing the validity of some 

of these particular features of posts near the beginning and end of the session. 

The next sixteen features (f10-f25) are based on the post itself, with many of them 

looking for specific patterns which should give a clue on the nature of the post.  For 

example, Greet dialog acts should contain a token like “hello”, while Question dialog 

acts might contain a “?” as a token.  

We selected the final feature (f26, current number of users logged on) because it 

might help normalize the distances associated with the first ten features.  Specifically, 

more users currently logged on might increase the distances between adjacency pairs 

such as Yes/No Questions and Yes- or No Answers.   

With the initial feature set having been defined, we now turn to the machine-

learning methods we implemented to support chat dialog act classification. 

2. Back-Propagation Neural Networks 

To test the effectiveness of classifying a post with a dialog act using the 27 

features, we first investigated back-propagation neural networks.  Both Mitchell [23] and 

Luger [24] provide excellent descriptions of artificial neural networks.  For brevity, we 

will present a conceptual overview of neural networks as well as the back propagation 

training algorithm as presented by Mitchell.  The reader is invited to turn to Mitchell for a 

derivation of the back-propagation rule itself.   
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The fundamental building block for all artificial neural networks is the artificial 

neuron, referred to hereafter as the unit.  The unit takes a series of inputs (either from the 

environment or other units), applies a weight to each input, and based on its internal 

threshold function, emits an output signal.  The threshold function used by the units, as 

well as how they are combined together, define the variety of decision surfaces that the 

neural network can perform.  Thus the training task associated with artificial neural 

networks is as follows: based on a set of inputs and target outputs, learn the weights for 

each unit such that the total error between actual network outputs and the target outputs is 

minimized. 

Back-propagation neural networks combine multiple unit layers along with a 

differentiable threshold function for each unit, permitting a rich variety of decision 

surfaces.  In particular, our implementation uses, in addition to the output layer, a single 

hidden layer of units.  Although there are a variety of sigmoid functions available to serve 

as a threshold function, the one we choose is the inverse tangent function, arctan(x).  This 

particular function has the (computationally) useful property that its derivative is easily 

expressed as the function itself, namely, 

 ( ) ( )( )2

2

arctan 1 1 arctan
1

d x
x

dx x
= = −

+
 

Thus, the output is a continuous function of a weighted sum of its inputs, or 

arctan( )o w x= ⋅ , where o is the output value, w  is the weight vector, and x is the input 

vector.  With the sigmoid function now defined, we turn to its implementation in the 

back-propagation neural network training algorithm, presented in Figure 5. 
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( )LGORITHM ACK- ROPAGATION , , , ,A B P in out hiddentrainingSet n n nη  
 

 Each element of trainingSet is a pair of the form ( ),x t , where x  is the vector 
of network input values and t  is the vector of target network output values.  
 η  is the learning rate, inn is the number of network inputs, hiddenn  is the 
number of hidden units, and outn  is the number of output units. 
 The input from unit i to unit j is denoted jix , and the weight from unit i to unit 
j is denoted jiw . 

 
1. Create a feed-forward network with inn inputs, hiddenn  hidden units, and outn  output 

units. 
2. Initialize all network weights jiw  to small random numbers (e.g., between -0.5 and 

0.5) 
3. While termination condition not met, Do: 

For each ( ),x t  in trainingSet, Do: 
 
Propagate the input forward through the network 
a. Input the instance x  to the network and compute the output uo  of every unit u 

in the network 
  arctan( )u u uo w x= ⋅  
 
Propagate the errors backward through the network 
b. For each network output unit k, calculate its error term kδ  

  ( ) ( )21k k k ko t oδ ← − −  
 
c. For each hidden unit h, calculate its error term hδ  

  ( )21h h kh k
k outputUnits

o wδ δ
∈

← − ∑  

 
d. Update each network weight jiw  
  ji ji jiw w w← +Δ  
 where 
  ji j jiw xηδΔ =  

 

Figure 5.   Back-Propagation with Gradient Descent for Neural Network Training (After 
[23]) 
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In our case, the input vector representing a particular post is the set of its features, 

and thus has 27 dimensions.  The features themselves were normalized by their maximum 

value seen for a particular feature, thus restricting their range to a real number between 

zero and one.  Similarly, the output for the neural network is a vector with a dimension 

equal to 15, the number of chat dialog act classes.  Thus, the training set for our back-

propagation neural network consists of the training posts’ feature vectors and their target 

output vectors (with “1” assigned for the actual dialog act classification and “0” for all 

other classes).  

To build the back-propagation network, we used Schemenauer’s implementation 

for the Python programming language [25].  In addition to the above parameters, we used 

16 hidden nodes and a learning rate of 0.05.  Note that we did not perform a formal 

optimization to determine these values.  Instead, we varied them around set values and 

selected the configuration that reduced the global error on a training set the most after 

twenty iterations on each configuration. 

With the discussion of the neural network implementation complete, we now turn 

to the second machine-learning method we investigated, the Naïve Bayes Classifier. 

3. Naïve Bayes Classifier 

Manning and Schütze [13], Jurafsky and Martin [14], Mitchell [23], and Luger 

[24] provide nice overviews of the general Bayesian learning approach.  Following 

Mitchell, we will first describe the Bayesian approach, show how the Naïve Bayes 

classifier follows from it, and then discuss how we used it with respect to the dialog act 

classification. 

Given a training set consisting of instances with features represented by a vector 

F  consisting of elements if Features∈  along with their associated classifications 

C Classes∈ , we can calculate the probabilities of those features given their classification 

as well as the prior probability of the class itself.  From Bayes theorem, we have  

 ( ) ( )
( )

|
|

P F C
P C F

P F
=  
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Since the denominator for each particular class is the same, we can assign the 

most probable class for an unseen instance by 

 ( ) ( )ˆ arg max |
i

i i
C Classes

C P F C P C
∈

=  

The Naïve Bayes classifier makes the simplifying assumption that the feature 

values are conditionally independent of the classification.  Therefore, the probability of 

observing 1 2 ... nf f f∧ ∧ ∧  given a class iC  is just the product of the probabilities of the 

individual features given the class, ( ) ( ) ( )1 2| | ... |i i n iP f C P f C P f C .  Substituting this in 

the general Bayesian learning approach gives us the Naïve Bayes Classifier 

 ( ) ( )ˆ arg max |
i

i j i
C Classes j

C P C P f C
∈

= ∏  

As with the Hidden Markov models employed in part-of-speech tagging discussed 

earlier, we must account for the possibility that our training set contains zero counts for a 

particular feature.  There, we smoothed using the Laplacian estimate of the probability.  

However, we found for the Naïve Bayes classifier for chat dialog acts that the Witten-

Bell probability estimate worked well, and thus we briefly describe its use next.   

The key behind many smoothing approaches is to estimate the counts of things 

never seen by the counts of things seen once.  For Witten-Bell (described in [14]), the 

probability mass reserved for unseen events is equal to T N T+  where T is the number 

of observed event types and N is the total number of observed events. This equates to the 

maximum likelihood estimate of a new type event occurring. The remaining probability 

mass is discounted such that all probability estimates sum to one, yielding 

  

 
( )

( )
i

i

( )    if c   0

     if c   0
i

i

p f T Z N T

c N T

= + =

= + ≠
  

 
where if  is a particular feature, ic  is its count in the training set, and Z is the total 
number of events with zero count, or 
 

: 0

1
ii c

Z
=

= ∑  

With the Naïve Bayes classifier and Witten-Bell smoothing discussion complete, 

we can now describe how we used it to automatically assign the dialog act class for a 
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particular post.  Given a training set of posts, with each post containing 27 feature values 

as well as a dialog act class, we calculated both the prior class probability distributions as 

well as the conditional probability distributions for each feature given a class.  We then 

smoothed these distributions by the total possible values for each particular feature.  

Finally, we used these smoothed distributions in the Naïve Bayes classifier to 

automatically assign the class for an unseen instance in the test set of posts. 

Now that we have covered both of the machine-learning approaches used in chat 

dialog act classification, we now describe our experimental set-up to assess the 

effectiveness of each approach.   

4. Chat Dialog Act Classification Experimental Approach 

As with the part-of-speech tagging experiments, we divided the privacy-masked 

chat corpus into 30 different training/test configurations, randomly selecting 10% of the 

corpus (1,060 posts) to serve as the test set, and the remaining 90% to serve as the 

training set.  Collecting 30 different training/test configuration samples from the corpus 

permits us to compare the performance of the different learning approaches based on the 

mean and standard deviation of several different performance scores.   

The first performance score we measured for each training/test configuration was 

the overall accuracy of the learning method.  Similar to part-of-speech tagging, accuracy 

is defined as 

 Number of posts labeled correctlyaccuracy
Total number of posts

=  

Unlike the part-of-speech tagging situation, the number of classification labels is 

relatively small.  As such, we found it particularly insightful to calculate both recall and 

precision scores for each class in each training/test configuration.  Their definitions are as 

follows. 

 Number in class labeled correctlyrecall
Actual number in the class

=  

 

 Number in class labeled correctlyprecision
Total number labeled as the class

=  
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Finally, although recall and precision enable us to assess each learning method’s 

performance at the dialog act classification level, it is useful to have a single measure for 

its performance.  The harmonic mean of the precision and recall scores, known as the f-

score, is a good measurement because it does not permit improving one aspect of 

performance at the expense of the other.  As such, f-score is defined as

 2f-score
1 precision 1 recall

=
+

 

With our description of the experiment complete, we are ready to compare the 

performance of the back-propagation neural network and Naïve Bayes machine-learning 

approaches.  The results of these experiments along with those of the part-of-speech 

taggers are presented in Chapter IV. 
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IV. TESTING AND ANALYSIS 

In this chapter we present the results of our experiments as well as provide a 

discussion on their significance.  We will first cover some general statistics of the 

privacy-masked corpus we collected, and provide comparisons to other language domains 

of similar size.  We will then review the performance of the various machine-learning 

approaches we used for both part-of-speech tagging and chat dialog act classification. 

A. CORPUS STATISTICAL COMPARISON 

Before trying to build a highly accurate tagger for the chat domain, we first 

needed to compare the chat domain to some baseline in order to assess the potential for 

tagger performance.  Since we had 10,567 tagged chat posts, we were initially inclined to 

select training/test sets consisting of 10,567 sentences from the other domains.  However, 

the unit of concern is at the token-, and not sentence-level.  Therefore, this would be 

inappropriate, since both Wall Street Journal and Switchboard sentences were on average 

much longer than chat posts.  Since the 10,567 tagged chat posts contained 45,068 

tokens, we randomly selected 30 different contiguous sections from both the Wall Street 

Journal and Switchboard corpora, with each sample containing the same number of 

tokens as the privacy-masked corpus (plus those necessary to complete the last sentence) 

to serve as source data for those domains.   

We then measured a number of lexical statistics on the chat privacy-masked 

corpus as well as the Wall Street Journal and Switchboard corpora samples.  In particular, 

we measured the token/type, part-of-speech (POS) tag count/type, and POS tag 

count/token ratios.  The token/type ratio is defined as the total number of words (tokens) 

in the corpus sample divided by the total number of unique words (types).  The POS tag 

count/type ratio is defined as the average of the number of part-of-speech tags for each 

type in the sample.  Finally, the POS tag count/token ratio is defined as the average of the 

number of part-of-speech tags for all tokens in the sample. 
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We also trained and tested unigram taggers (backing off to the domain’s MLE), 

HMM taggers, and Brill taggers (with the aforementioned unigram taggers serving as the 

initial tagger) for each of the domains, using a single representative sample from each of 

the Wall Street Journal and Switchboard samples collected earlier.  From those 

selections, we then created 30 different training/test sets by randomly removing 10% of 

the sentence-level units from each domain sample to serve as test data with the remainder 

serving as training data.   

With this brief overview of the baseline comparison methodology complete, we 

can now discuss the corpora lexical statistics, summarized in Table 12. 

Privacy-
masked 

Chat 

Wall Street 
Journal 

Switchboard 

Sentence Level Units: Mean 10567 867.533 2866.000 
Std Dev - 49.907 225.960 

Tokens: Mean 45068 45094.167 45074.533 
St Dev - 27.969 26.531 

Types: Mean 5803 7094.033 3046.900 
St Dev - 192.415 80.910 

Misspelled Tokens: Mean 490 0 36.433 
St Dev - 0 10.484 

Misspelled Types: Mean 433 0 27.133 
St Dev - 0 6.745 

Token/Type: Mean 7.766 6.361 14.804 
St Dev - 0.177 0.399 

Table 12.   Corpora Lexical Statistics Summary 

1. Corpora Sample Token/Type Ratios 

Since all the domain samples were roughly the same size (measured by number of 

tokens), the token/type ratio represents the size of each domain’s vocabulary.  In other 

words, as the token/type ratio gets larger, the vocabulary of the domain sample (measured 

by number of types) gets smaller, since all samples contained roughly the same number 

of tokens.  As can be seen in Table 12, the chat token/type ratio of 7.766 is much closer 
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to the Wall Street Journal corpus than that of Switchboard as represented by the means 

and standard deviations from 30 similarly sized samples from each domain. 

These findings are consistent with Freiermuth’s comparative analysis of political 

discussion in the written, spoken, and chat domains, although his samples were much 

smaller (3000 tokens/domain) [9].  This finding bears further discussion.  Based on the 

fact that a conversation is taking place, online chat may seem like spoken language.  

However, from a lexical perspective, it is much more diverse, and thus more closely 

resembles traditional written language.  Apparently, one’s ability to edit his/her post 

before pressing “Enter” allows them to be more selective in the words they choose to use.  

As described in Chapter II, the Contexts of Production and Use are synchronous for 

spoken language, thus inhibiting the participants’ ability to find preferred words because 

they are either trying to maintain the floor or avoid silence.  By contrast, the Contexts of 

Production and Use are asynchronous in traditional written language as well as chat, with 

the token/type ratio being one piece of evidence for this asynchronicity.   

There are some things unique to the privacy-masked chat domain, though, that 

directly affect its token/type ratio, and are thus worth mentioning.  First of all, the privacy 

masking activity itself has the effect of increasing the token/type ratio.  This is because 

all direct references to chat participants were replaced with a single, unique name per 

participant.  In many cases, though, chat participants were referred to by more than one 

name (from our example in Chapter III, “killerBlonde51”, “killer”, “Blondie”, “kb51”, 

etc.).   

Second, the privacy-masked chat corpus (and the chat domain in general) is 

littered with misspellings, which will decrease the token/type ratio.  Specifically, we 

tagged 490 tokens in the privacy-masked chat corpus as misspellings.  Of these, 433 were 

unique misspellings.  Thus, roughly one percent of the privacy-masked chat corpus 

contained misspellings.  This is in comparison to both Wall Street Journal articles and the 

transcribed Switchboard spoken conversations, which contain virtually no misspellings 

(see Table 12).   
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Finally, several of the emoticons and chat abbreviations have the “property” that 

they can contain repetition of characters within the word.  These variants of the same 

expression also decrease the token/type ratio for chat.  For example, we observed a 

number of variants for the emoticon “<3” (a heart shape on its side):  “<333”, 

“<33333333”, “<3’s”, etc.  Each of these variants was counted as a separate type.  We 

did not treat these as misspellings, and instead tagged them as interjections.  Note that the 

same property occurred in traditional words, e.g. “reeeeeallllllly” for “really”, although in 

these cases we did tag them as misspellings.  Regardless of how they were tagged, 

though, these unique types, albeit with the same “root”, add to the lexical diversity of the 

chat domain per our definition.   

What effect does the chat token/type ratio have on stochastic part-of-speech 

tagging?  As mentioned earlier, a smaller token/type ratio means a larger vocabulary for 

the domain.  As such, a corpus with a larger token/type will generally have more data to 

train a part-of-speech tagger than a similarly sized corpus with a smaller token/type ratio.  

Regarding the special case for misspellings, it will be difficult for a stochastic tagger to 

correctly tag a misspelling, since its type may only occur in the corpora a few times at 

most (depending on its size).  Thus, the token/type ratio could be a significant factor in 

stochastic tagger performance, but it is not the only one.  In particular, the part-of-speech 

ambiguity for a particular word, represented overall for a corpus by its POS tag count 

ratios, will also play a role.   

2. Corpora Sample POS Tag Count/Type Ratios 

One of the measures of a word’s lexical ambiguity is the number of part-of-

speech tags it can have when in use.  Words that have only one part-of-speech tag, for 

example, “the” (tagged “DT” for determiner) are unambiguous.  On the other hand, if a 

word has more than one possible part-of-speech tag, e.g. the word “bear”, the machine-

learning algorithm has a decision to make.  Thus, words with more than one part-of-

speech tag are ambiguous, and it is these words that determine the upper limit for overall 

tagging accuracy.  The part-of-speech tag counts for both tokens and types within the 

privacy-masked chat corpora are presented in Table 13 below.   
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Chat POS Tag 
Count 

Chat Type 
Count 

Chat Token 
Count 

1 5141 20867
2 489 10175
3 121 5988
4 30 3472
5 16 3577
6

(“s”, “a”, “of”, “there”) 4 947
7

(“n”, “‘”) 2 42

Total Counts 5803 45068
POS Tag Count

Ratios 1.158 2.151

Table 13.   POS Tag Counts for Privacy-masked Chat Corpus Types and Tokens 

As can be seen, even though the vast majority of the chat types have only one 

part-of-speech tag, less than half of the tokens in the privacy-masked corpus are of this 

variety.  In particular, note that more than a quarter of the tokens have three or more part-

of-speech tags.  In fact, many of the types with part-of-speech tags numbered five and 

greater include a misspelling part-of-speech tag.  Thus, since the tagger is concerned with 

tagging words in use (tokens), the POS tag count/token ratio (as opposed to the 

corresponding type ratio) will have the most impact on overall tagger performance.  We 

present a comparison between the samples from the three domains in Table 14. 

Privacy-
masked 

Chat 

Wall Street 
Journal 

Switchboard 

POS Tag Count/Type: Mean 1.158 1.141 1.186 
St Dev - 0.006 0.008 

POS Tag Count/Token: Mean 2.151 1.459 1.833 
St Dev - 0.079 0.105 

Table 14.   Corpora POS Tag Count Ratio Summary 

As can be seen, chat has the largest POS tag count/token ratio for the three 

domains, with over two tags per token on average.  Switchboard follows with a ratio of 

1.833, with Wall Street Journal having the least part-of-speech ambiguity with a 1.459 
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tags/token ratio.  How does this ambiguity affect impact tagger performance?  As 

mentioned earlier, a stochastic tagger will in general have a more difficult task in 

selecting the correct part-of-speech the more labels it has to choose from.  However, this 

will be offset by the amount of lexical data it has to train from, represented by the 

corpus’s token/type ratio.   

With these two measures in mind, we can now see how they might affect part-of-

speech taggers trained on the same amount of data from the same domain.   

3. Tagger Self Domain Comparison 

The various tagger accuracies, each trained on data only from their own domain, 

are shown in Table 15. 

Privacy 
Masked 

Chat 

Wall Street 
Journal 
Sample 

Switchboard 
Sample 

Sample Size (Tokens) 45068 45074 45085 
Token/Type 7.766 6.387 14.777 

POS Tag Count/Token 2.151 1.428 1.803 

Unigram to MLE Accuracy: Mean 0.8123 0.8223 0.8577 
Std Dev 0.0069 0.0066 0.0071 

HMM Accuracy: Mean 0.8699 0.8869 0.9132 
Std Dev 0.0062 0.0080 0.0049 

Brill Accuracy: Mean 0.8601 0.8659 0.8998 
Std Dev 0.0071 0.0069 0.0052 

Table 15.   Self Domain Tagger Performance Comparison 

As can be seen, all part-of-speech taggers performed the best on the Switchboard 

corpora sample, achieving over 91% accuracy with its Hidden Markov Model tagger.  It 

appears that, although its part-of-speech ambiguity is between the other two domains, 

tagger performance is assisted by the fact that the Switchboard sample has nearly twice as 

many tokens per type, providing more information to base its tagging decisions upon.  

Indeed, its unigram-MLE tagger performs nearly as well as the best performing taggers 

for the other domains.   
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The next best performing domain was the Wall Street Journal, followed 

surprisingly close by the privacy-masked chat corpus.  Indeed, the chat domain’s Brill 

tagger nearly equaled its counterpart for the Wall Street Journal sample.  This is 

interesting, since although chat usage may appear to be “wild”, it confirms the fact that 

with all communication domains, there are both lexical and syntactic rules that govern 

acceptable structure.  This leads one to ask the question of why a domain with over one 

percent of its tokens misspelled (as well as a much greater part-of-speech ambiguity) can 

almost equal the tagging performance of a more structured (albeit complex) domain.  

Certainly there are other factors that play a role, not the least of which is the syntactic 

structure of the sentences in the domains themselves.  Nevertheless, these results are 

encouraging, and provide a level of confidence that state-of-the-art taggers employed on 

chat should reach similar accuracy rates given similar amounts of training data. 

With this baseline comparison complete, we now turn to presenting the results of 

our efforts to maximize the performance of part-of-speech taggers for the chat domain.  

B. CHAT PART-OF-SPEECH TAGGING RESULTS 

In this section we present the results of our part-of-speech tagging experiments.  

We will first present the accuracy of various N-gram back off taggers, followed by the 

HMM taggers, and finally the Brill taggers.  Throughout, we will provide comments on 

both the effectiveness and significance of the various tagging approaches. 

1. N-Gram Back Off Tagger Performance 

In our discussion on the n-gram tagger performance, we will first review the 

performance of the taggers each trained on the Wall Street Journal, Brown, Switchboard, 

the entire Penn Treebank, and Chat domains.  We then cover the n-gram taggers trained 

on combinations of those domains, to include some performance enhancements over the 

basic n-gram back off approach. 
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a. N-Gram Back Off Trained on Single Domain 

The mean accuracy and associated standard deviation for unigram and 

bigram taggers trained on a single domain and tested on the chat domain are shown in 

Table 16, and graphically in Figure 6.  Note that error bars in all subsequent tagger 

accuracy plots represent +/-1 standard deviation for the mean accuracy figure. 

 Accuracy: 
Mean 

Accuracy: 
St Dev 

Switchboard Unigram 0.5329 0.0085

Bigram 0.5387 0.0082

WSJ Unigram 0.5396 0.0082

Bigram 0.5505 0.0080

Brown Unigram 0.5460 0.0089

Bigram 0.5587 0.0091

All Treebank Unigram 0.5877 0.0078

Bigram 0.6006 0.0078

Chat Unigram 0.8123 0.0069

Bigram 0.8242 0.0074

Table 16.   N-Gram Back Off Tagger Performance on Chat Trained on a Single Domain 

Unigram/Bigram Backoff Performance
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Figure 6.   N-Gram Back Off Tagger Performance on Chat Trained on a Single Domain 
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Recall that for the unigram taggers, a tag is assigned based on the word 

type’s most prevalent tag in the training data.  If no instance is found in the training data, 

the tagger backs off to the most prevalent tag in the entire domain, referred to as the 

maximum likelihood estimate (MLE).  The MLE for the Wall Street Journal, Brown, and 

the entire Treebank (which also includes Switchboard) is “NN”; the MLE for 

Switchboard alone is “,”; finally, the MLE for the privacy-masked chat corpus is “UH”.  

The approach is the same for the bigram tagger, except that they first use a bigram 

instance (if the training data contains it) before backing off the unigram and ultimately 

the domain MLE.   

Several things are readily evident in Figure 6.  Notice first that the 

accuracies of the bigram taggers are only marginally better than their unigram 

counterparts trained on a given domain.  Also, notice that there is little difference 

between the accuracies of taggers (54-55%) trained on only one corpus from the 

Treebank.  However, when all Treebank corpora are included in the training set, the 

accuracy jumps up to 60.1% for the bigram back off tagger version. 

Although not surprising, it is nonetheless striking to see the performance 

improvement when the tagger is trained on chat data.  Relatively few words are required 

from the chat domain (~41,000 training set tokens) to get 82.4% accuracy using the 

bigram back off tagging approach alone.  This is compared to 60.1% when training on 

millions of words from the written and spoken domains, as represented by the Penn 

Treebank.  This brings home a fundamental point of our work.  At least from a 

vocabulary perspective, the chat domain is fundamentally different than that of either 

traditional written or spoken domains.  That being said, we seek to understand whether 

those domains are still of some benefit from both a lexical as well as syntactical 

perspective to provide tagging performance improvements over methods using only a 

small amount of training data (albeit exactly the right kind of training data).  Our next 

section will start to address this issue. 
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b. N-Gram Back Off Tagger Performance Improvements 

Performance improvements over the back off taggers discussed in the 

previous are shown in Table 17, and graphically in Figure 7. 

 

Accuracy: 
Mean 

Accuracy: 
St Dev 

Chat to Switchboard: 
Chained Unigram 0.8464 0.0052 

Chained Bigram 0.8612 0.0053 
Chat to WSJ: 

Chained Unigram 0.8508 0.0050 

Chained Bigram 0.8647 0.0051 
Chat to Brown: 

Chained Unigram 0.8542 0.0054 

Chained Bigram 0.8685 0.0054 
Chat to All Treebank: 

Chained Unigram 0.8604 0.0046 

Chained Bigram 0.8761 0.0045 
Chained Bigram w/ Regex 

(Chat + Treebank) 0.8917 0.0043 
Combined Corpora Bigram 

w/ Regex (Chat + Treebank) 0.8984 0.0045 

Table 17.   N-Gram Back Off Tagger Performance Improvements 



 67

Bigram Backoff Performance Improvements
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Figure 7.   N-Gram Back Off Tagger Performance Improvements 

Recall that the chained unigram (bigram) back off tagger incorporates a 

unigram (bigram) back off tagger trained first on chat.  However, instead of backing off 

immediately to the chat MLE, the tagger first backs off to another unigram (bigram) back 

off tagger trained on another domain.  Unlike the case for unigram / bigram back off 

taggers trained on a single domain, however, there appears to be a significant 

improvement in performance using the bigram information.  Regardless, incorporating 

multiple domains as part of the training set provide significant improvement to the 

bigram back off tagger trained on chat alone.   

The final two taggers bear some explanation.  The first is a chained bigram 

back off tagger trained on both chat and the entire Penn Treebank.  However, before 

backing off to the chat MLE, it first uses a regular expression that recognizes privacy-

masked names and tags them as “NNP”.  More importantly, though, it uses standard 

morphological rules (e.g., adverbs end in “ly”, plural nouns end in “s”, etc.) to assign a 

likely tag.  Incorporating this regular expression provides a significant 1.5% 

improvement in total accuracy over the same tagger not using the regular expression.   
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The final tagger also uses the same regular expression.  However, instead 

of using multiple domains via a chaining approach, it instead trains on all the corpora at 

the same time, resulting in a single bigram back off tagger.  Since the chat training data is 

much smaller (thousands of words as opposed to millions of Treebank words), it must be 

“multiplied” so that its effect is not drowned out by the larger Treebank data set.  

Through an informal optimization, we determined that multiplying chat by 70 resulted in 

the best accuracy improvement.  Overall accuracy for this approach is 89.8%. 

Although adding additional domains clearly improves the bigram back off 

tagger performance, the tagging algorithm itself is relatively simple.  As such, 

performance improvement can largely be attributed to the additional vocabulary provided 

by the Penn Treebank corpora.  Of course, we want to use this additional information, in 

conjunction with more sophisticated tagging approaches, to improve tagging accuracy 

even more.  With this in mind, we turn now to the Hidden Markov Model (HMM) tagger 

results. 

2. Hidden Markov Model Tagger Performance 

Hidden Markov Model taggers, by the nature of the algorithms used, take 

considerably longer than the n-gram back off tagger we investigated both to train as well 

as to assign the most likely tag sequence given a string of tokens.  As such, we took the 

following testing approach.  First, we ran 30 different training/test sets, with each tagger 

trained only on the particular chat training data set.  Second, we trained an HMM using 

samples of size ~45,000 tokens from both the Wall Street Journal and Switchboard.  In 

the same fashion as before, we multiplied each chat training data set by seven to ensure it 

did not get drowned out by the addition of the other non chat data.  For both the chat only 

and chat + WSJ/Switchboard sample configurations, we calculated the mean accuracies 

and standard deviations.  Finally, we selected the one training/test set pair (out of 30) that 

had the closest accuracy to the mean accuracy of the HMM taggers trained only on chat.  

For this training/test pair, we trained on chat data (multiplied by varying amounts) 

combined with the entire Penn Treebank.  The accuracies and standard deviations for the 

HMM tagger experiments are shown in Table 18, and graphically in Figure 8.   
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 Mean St Dev 

HMM Chat 0.8699 0.0062 
HMM Chat X 7 + WSJ, 
Switchboard Samples 0.8853 0.0054 
HMM Single Sample: 

Chat X 150 + Treebank 0.903 - 

Table 18.   Hidden Markov Model Tagger Performance 
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Figure 8.   Hidden Markov Model Tagger Performance 

First mentioned in Chapter IV Section A, the HMM tagger trained only on chat 

data achieves a mean accuracy of 87.0% (Table 15), a significant increase over the best 

bigram back off tagger trained only on chat (82.4%; see Table 16).  The HMM tagger 

trained on chat and samples from the WSJ and Switchboard performed significantly 

better than an HMM tagger trained on chat alone, achieving a mean accuracy of 88.5%.   

For the single training/test pair trained on both chat and the entire Treebank, we 

achieved a maximum accuracy of 90.3% when the chat training set was multiplied by 

150.  This result suggests that an HMM tagger trained on both chat and the entire 

Treebank might perform significantly better than the best performing tagger presented so 
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far, the combined corpora bigram back off tagger, which had a mean accuracy of 89.8%.  

Indeed, the HMM tagger could perform even better than the accuracy figures suggest, 

since the bigram back off tagger incorporates a regular expression that automatically tags 

privacy-masked user names.  The HMM tagger does not rely on regular expression in 

assigning its most likely tag sequence, giving it a better chance at correctly tagging non-

privacy-masked user names as “NNP”. 

3. Brill Tagger Performance 

As discussed in Chapter III, there are two aspects to Brill tagger training.  First, 

there is the training of the tagger that serves as input to the transformation learning 

algorithm.  For the input tagger, Brill suggests using a unigram approach that tags each 

word with its most common part-of-speech tag [15].  Then, there is the implementation of 

the algorithm itself, which learns a sequence of rules that, when iteratively applied to the 

input tagger, improves upon its performance. 

As with the other two tagging approaches, our goal is to combine chat training 

data with corpora from both the written and spoken domains to maximize part-of-speech 

tagging performance.  However, it takes both a significant amount of time and memory 

for Brill’s transformation learning algorithm to learn a reasonable number of rules (250) 

based on a large training set.  Thus, for our initial Brill tagging experiments, we took the 

following approach.  For the input tagger, we selected one training/test set pair (out of 

30) that had the closest accuracy to the mean accuracy of the chained unigram tagger that 

incorporates a regular expression (87.56%).  For this training/test pair, we then used the 

transformation learning algorithm to train on chat data (multiplied by varying amounts) 

combined with 50% of the Wall Street Journal.  The accuracies and associated standard 

deviations for these Brill tagger experiments are shown in Table 19 and graphically in 

Figure 9.   
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 Mean St Dev 
Chained Unigram: Chat to 

All Treeebank to Regex 0.8756 0.0043 
Brill Single Sample: 

Chat X 30 + 50% WSJ 0.8988 - 

Table 19.   Brill Tagger Performance for Single Chat Test Set 
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Figure 9.   Brill Tagger Performance for Single Chat Test Set 

For the single training/test pair using a chained unigram back off tagger 

subsequently learning rules based on both chat and 50% of the Wall Street Journal, we 

achieved a maximum accuracy of 89.9% when the chat training set was multiplied by 30.  

Indeed, this is significantly better than the performance of the Brill tagger trained only on 

chat data (first mentioned in Chapter IV Section A), with a mean accuracy of 86.0% (see 

Table 15).  This result suggests that a Brill tagger trained on both chat and the entire 

Treebank might also perform significantly better than the best performing tagger 

presented so far, the combined corpora bigram back off tagger, which had a mean 

accuracy of 89.8% (see Table 17 and Figure 7).   
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In addition to using a chained unigram back off tagger, we investigated using our 

most accurate n-gram back off taggers as input into the Brill transformation learning 

algorithm.  First, we used our chained bigram back off tagger incorporating a regular 

expression, with a mean accuracy of 89.2%.  Second, we used the combined corpora 

bigram back off tagger (which included the entire Treebank plus the chat training set 

multiplied by 70), with a mean accuracy of 89.8%.  For both of these input tagger sets, 

we trained with the transformation learning algorithm only on chat data.  Finally, we used 

the combined corpora bigram back off tagger, but trained with the algorithm on both chat 

data (multiplied by seven) as well as using samples of size ~45,000 tokens from both the 

Wall Street Journal and Switchboard.  The accuracies and associated standard deviations 

for these Brill tagger experiments are shown in Table 20, and graphically in Figure 10.   

Accuracy: 
Mean 

Accuracy: 
St Dev 

Chained Bigram w/ Regex (Chat 
+ Treebank) 0.8917 0.0043 

Brill Encapsulation of Chained 
Bigram, Trained on Chat 0.9059 0.0047 

Combined Corpora Bigram w/ 
Regex (Chat + Treebank) 0.8984 0.0045 

Brill Encapsulation of Combined 
Corpora Bigram, Trained on Chat 0.9069 0.0050 

Brill Encapsulation of Combined 
Corpora Bigram, Trained on 

ChatX7 + WSJ, Switch samples 0.9077 0.0045 

Table 20.   Brill Tagger Performance Improvements 
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Brill Tagger Performance Improvements
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Figure 10.   Brill Tagger Performance Improvements 

Encapsulating the chained bigram and combined corpora bigram back off taggers 

with rules learned by the transformation learning algorithm result in a significant 

improvement in accuracy.  The best performing Brill tagger achieved a mean accuracy of 

90.8%.  However, based on the standard deviations, this is not a significant improvement 

over the accuracy of any of the other Brill taggers, with accuracies of 90.6% and 90.7%.  

Based on the earlier Brill results, the addition of more non-chat training data for the Brill 

learning algorithm should improve performance.  That being said, achieving Brill tagger 

accuracies significantly greater than 91% appears unlikely within the current privacy-

masked chat corpus framework. 

4. Discussion 

As mentioned earlier, results from single training/test sample pairs suggest that 

significant performance improvements are achievable with both HMM and Brill 

approaches.  What we did not investigate, however, was whether there was an optimal 

ratio of the various Treebank corpora to use to improve tagger performance on chat.  

Varying the amount of training data from each Treebank corpora, although it may 
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degrade performance of the simpler n-gram back off taggers, may actually improve 

performance for the more sophisticated tagging approaches (when compared to training 

on the entire Treebank). 

In addition to training more sophisticated taggers on larger, tailored subsets of the 

Penn Treebank corpora, we should revisit our initial corpus construction decisions to see 

how they impact tagger performance.  For example, we tagged emoticons and chat 

abbreviations as interjections.  However, their distribution in chat is probably different 

than that of traditional interjections in spoken or written language.  The use of one or two 

new tags to represent emoticons and chat abbreviations may provide a critical distinction 

between those and the traditional interjections that also occur in chat, e.g., greetings, 

yes/no responses to questions, fillers, etc.  Recognizing these distinctions with a new 

tag(s) could improve overall performance.   

Another of our early decisions that should be reconsidered is the lack of 

tokenization of contractions.  Recall that based on their frequency of use, we treated 

words like “doncha” as a single word, and assigned it a single part-of-speech tag that 

most closely resembled its use.  Thus, the post “doncha feel good?” would be tagged as 

“doncha/VBP feel/VB good/JJ ?/.” That tag sequence would be the same as “do/VBP 

feel/VB good/JJ ?/.”, and yet this is unlikely to be found in even the most informal 

written or transcribed spoken domains.  Tokenizing “doncha” as “do” and “ncha” would 

lead to the following tagging sequence: “do/VBP ncha/PRP feel/VB good/JJ ?/.”, which 

is a tag sequence much more likely to be found in the written and transcribed spoken 

domains.  Both HMM and Brill taggers should be able to take advantage of this closer 

match to those domains.  Of course, this would complicate the tokenizing task, requiring 

a dictionary of these contractions so that they can be recognized and split appropriately 

during the tokenization phase.   

Finally, we should reconsider how we handle misspellings, both from a corpus 

construction as well as a part-of-speech tagging system approach.  Including misspelled 

tokens in the corpus add additional labels to types, thus increasing the part-of-speech 

ambiguity for word types such as “there” and “your”, which are both correct and 

incorrect spellings depending on their context.  During corpus construction, these 
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misspellings could be corrected, but the part-of-speech tagger will certainly not actually 

be used in such a pristine environment.  A spelling module, which both detects and 

attempts to correct misspelled tokens, could serve as an input to the part-of-speech 

tagging system.  Of course, such a module would also need to be trained, with more 

sophisticated approaches potentially requiring part-of-speech labels as input!  Thus, 

automated spelling correctors would complicate the real-time use of natural language 

processing applications that rely on part-of-speech tagging.  Jurafsky and Martin provide 

a nice overview of misspelling recognition and correction techniques [14].   

With the presentation of our experiment results for part-of-speech tagging 

complete, we now turn to the results of our chat dialog act classification experiments. 

C. CHAT DIALOG ACT CLASSIFICATION RESULTS 

Before presenting the chat dialog act classification results of the two machine-

learning approaches, we first present the dialog act class counts for the chat privacy-

masked corpus as well as the comparison methodology we used to assess whether the 

difference in machine-learning approaches is significant. 
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Class Count Percent 
Statement 3163 29.93%

System 2630 24.89%

Greet 1438 13.61%

Emotion 1046 9.90%

Wh-Question 538 5.09%

Yes/No Question 538 5.09%

Accept 238 2.25%

Bye 195 1.85%

Emphasis 189 1.79%

Continuer 171 1.62%

Reject 160 1.51%

Yes Answer 109 1.03%

No Answer 73 0.69%

Other 41 0.39%

Clarify 38 0.36%

All Classes 10567 100.00%

Table 21.   Chat Dialog Act Frequencies 

As can be seen in Table 21, Statement is the most common class, followed closely 

by System, and then dropping off quickly to Greet, Emotion, Wh- and Yes/No Question 

classes.  The remaining nine classes all occur with less than 2.25% frequency.  That 

means only 11.5% of the posts represent 60% of th e chat dialog act class categories.  

This may present a problem for the machine-learning approaches, since both back 

propagation neural networks and the Naïve Bayes classifier require training data to make 

their classifications, and relatively little data is available for these categories.  That being 

said, if there are good features that clearly distinguish these categories from higher 

percentage ones, there is the opportunity for the machine-learning method to make the 

correct classification. 

As mentioned at the end of Chapter III, we divided the privacy-masked chat 

corpus into 30 different training/test configurations, randomly selecting 10% of the 

corpus (1,060 posts) to serve as the test set, and the remaining 90% to serve as the 
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training set.  After testing each test set with the specific machine-learning approach, we 

calculated precision, recall, and f-scores for each dialog act class as well as the overall 

accuracy.  A useful way to visualize the performance of the learning approach is through 

a confusion matrix.  A confusion matrix is an N × N matrix, where N is the number of 

categories a test instance can be classified into.  Thus, for chat dialog acts, N = 15.  The 

sums of each row represent the truth, i.e., the actual counts of the classes in the test set.  

The sums of each column represent what the learning algorithm labeled as that class.  

Thus, entries on the diagonal are the number of instances labeled correctly, and 

recall/precision for each class can be calculated by dividing the diagonal entry by the 

row/column sum, respectively.  Although we will not present all confusion matrices for 

all training/test sets, an example of one is shown in Figure 11. 
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Accept 13 0 0 0 2 1 0 0 0 0 6 0 0 0 0 22 0.722 0.591 0.65
Bye 0 12 0 0 0 1 0 0 0 0 2 0 1 0 0 16 0.923 0.75 0.828

Clarify 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 undef 0 undef
Continuer 0 0 0 0 0 2 0 0 0 0 14 0 0 0 0 16 undef 0 undef

Emotion 0 0 0 0 110 2 0 0 0 0 0 0 0 0 0 112 0.827 0.982 0.898
Emphasis 1 0 0 0 1 9 0 0 0 0 5 1 0 0 0 17 0.409 0.529 0.462

Greet 0 0 0 0 12 5 114 0 0 0 10 0 2 0 3 146 0.934 0.781 0.851
nAnswer 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 8 undef 0 undef

Other 0 0 0 0 0 0 0 0 4 0 1 0 0 0 0 5 0.8 0.8 0.8
Reject 0 0 0 0 0 0 1 0 0 0 15 0 0 0 0 16 undef 0 undef

Statement 2 1 0 0 8 2 6 0 0 0 292 2 5 0 3 321 0.785 0.91 0.843
System 0 0 0 0 0 0 0 0 0 0 4 252 0 0 0 256 0.988 0.984 0.986

whQuestion 0 0 0 0 0 0 0 0 0 0 5 0 41 0 6 52 0.804 0.788 0.796
yAnswer 2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 4 undef 0 undef

ynQuestion 0 0 0 0 0 0 1 0 0 0 9 0 2 0 53 65 0.803 0.815 0.809

Total Labeled 18 13 0 0 133 22 122 0 5 0 372 255 51 0 66
Test Set Accuracy: 0.851  

Figure 11.   Example Confusion Matrix for Chat Dialog Act Classification (Back 
Propagation Neural Network, 24 Features, 100 iterations) 

Finally, we calculated the means and standard deviations for the recall, precision, 

f-score, and overall accuracy of each experiment configuration.  To ascertain if there was 

a significant difference in the performance of two learning approaches, we performed 

hypothesis (z) tests using the approaches mean and standard deviations.  For 95% 

confidence, we reject the null hypothesis that the means are equal if |z| > 1.96.   

With our discussion of chat dialog act class frequencies and comparison 

methodology complete, we now turn to the classification results.  We will first look at the 
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performance of the back propagation neural network and Naïve Bayes classifier using 27 

features.  We will then look at the performance of both learning approaches using a 

smaller, 24 feature set.   

1. 27 Feature Experiment Results 

For the 27 feature set, we first present the results of the back propagation neural 

network, to include the effect of varying the number of training iterations.  We then 

present the results of the Naïve Bayes classifier, to include the effect of ignoring the prior 

probability for each class in the Naïve Bayes argmax equation.   

a. Back Propagation Neural Network 

The mean and standard deviation of each chat dialog act class’s precision, 

recall, and f-scores as well as the overall accuracy for the back propagation neural 

network trained for 100 iterations are shown below in Table 22. 
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Precision Recall F-Score  

Mean St Dev Mean St Dev Mean St Dev 
Accept undef undef 0.237 0.111 undef undef

Bye 0.803 0.096 0.785 0.093 0.788 0.064

Clarify undef undef  undef undef undef undef

Continuer undef undef 0.008 0.024 undef undef

Emotion 0.775 0.041 0.955 0.041 0.855 0.034

Emphasis 0.641 0.108 0.613 0.1 0.619 0.075

Greet 0.921 0.036 0.83 0.039 0.873 0.031

No Answer undef undef 0.014 0.078 undef undef

Other 0.891 0.174 0.86 0.169 0.857 0.136

Reject undef undef 0.059 0.1 undef undef

Statement 0.75 0.028 0.861 0.022 0.801 0.016

System 0.985 0.008 0.983 0.008 0.984 0.005

Wh-Question 0.809 0.047 0.796 0.059 0.801 0.042

Yes Answer undef undef 0 0 undef undef

Yes/No Question 0.747 0.049 0.801 0.036 0.772 0.03

Overall Accuracy 0.828 0.012 - - - -

Table 22.   Back Propagation Neural Network Classifier Performance (27 Features, 100 
iterations) 

The overall accuracy of 82.8% is a significant improvement over both 

choosing randomly (6.7% given 15 choices) and choosing the MLE (29.9% for 

Statement).  Classes performing particular well include System (f-score of 0.984) and 

Emotion (f-score of 0.855).  This is not surprising, since both classes have very strong 

features associated with them.  Overall, the six most frequent classes, representing nearly 

90% of the posts, performed well, with average f-scores (over the 30 training/test sets) of 

0.772 or greater.  We were also able to detect the lower frequency Other (f-score of 

0.857) and Emphasis (f-score of 0.619) classes.   

However, for all other lower frequency classes we were unable to reliably 

assign a classification.  This is somewhat disappointing, because we believe we had good 

features to detect Yes-/No- Answers (features f2, f15, and f16 from Table 11), 
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Accepts/Rejects (features f15 and f16), Continuers (feature f11), and Clarifies (feature f1 

and f25).  It appears that the back propagation neural network mislabeled most of the 

lower frequency class posts as Statements.  This evidenced by the mean precision score 

of 0.75 for the Statement class.  This indicates that on average, one quarter of those posts 

labeled as Statements were not.  A specific example of this can be seen in one of the 

confusion matrices we generated in the 27 feature back propagation neural network, 

shown in Figure 12.  Notice the large number of low frequency posts mislabeled as 

Statements, as indicated in the Statement column. 
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Accept 4 2 0 0 1 0 0 0 0 0 8 1 0 0 0 16 0.4 0.25 0.308
Bye 0 17 0 0 0 0 0 0 0 0 6 0 0 0 0 23 0.85 0.739 0.791

Clarify 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 5 undef 0 undef
Continuer 0 0 0 0 0 0 1 0 0 0 14 0 0 0 3 18 undef 0 undef

Emotion 0 0 0 0 101 0 0 0 0 0 4 0 0 0 0 105 0.727 0.962 0.828
Emphasis 0 0 0 0 1 8 0 0 0 0 5 0 0 0 0 14 0.727 0.571 0.64

Greet 0 0 0 0 10 0 116 0 0 0 17 1 2 0 0 146 0.928 0.795 0.856
nAnswer 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 3 undef 0 undef

Other 0 0 0 0 0 0 0 0 4 0 2 0 0 0 0 6 1 0.667 0.8
Reject 0 0 0 0 2 0 0 0 0 0 6 1 0 0 0 9 0 0 undef

Statement 1 1 0 0 23 1 8 0 0 0 281 2 3 0 8 328 0.751 0.857 0.801
System 0 0 0 0 0 2 0 0 0 0 7 256 0 0 0 265 0.981 0.966 0.973

whQuestion 0 0 0 0 0 0 0 0 0 0 7 0 43 0 5 55 0.896 0.782 0.835
yAnswer 5 0 0 0 0 0 0 0 0 0 4 0 0 0 0 9 undef 0 undef

ynQuestion 0 0 0 0 0 0 0 0 0 0 8 0 0 0 47 55 0.746 0.855 0.797

Total Labeled 10 20 0 0 139 11 125 0 4 2 374 261 48 0 63
Test Set Accuracy: 0.83  

Figure 12.   Example Confusion Matrix for Chat Dialog Act Classification (Back 
Propagation Neural Network, 27 Features, 100 iterations) 

Our first attempt to improve the performance of the back propagation 

neural network with 27 features was to increase the number of training iterations for each 

training/test set.  The longer the neural network is allowed to train, the more the overall 

error is reduced between the target output values and the output unit layer.  However, 

neural networks are susceptible to overtraining, such that they will continue to reduce the 

training set error at the expense of the domain in general, as represented by the test set.  

To ascertain when overtraining begins to occur, we ran a sample test on a smaller 

training/test set (3,507 posts total) using only 22 features.  The errors on the training/test 

set as a function of the number of iterations are shown in Figures 13 and 14. 
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Figure 13.   Back Propagation Neural Network Training Set Error (3007 posts, 22 

Features) 
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Figure 14.   Back Propagation Neural Network Test Set Error (500 posts, 22 Features) 
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As can be seen, most of the error on the test set is reduced by roughly 250 

iterations.  Also, although the training data error rate continues to decrease as iterations 

increase, at roughly 850 iterations, the test data error starts to increase.  Although this is 

not a formal assessment of when over-fitting begins to occur, it suggests that a large 

number of training iterations are not required for back propagation neural networks of 

this size to reach maximum expected error reduction. 

With this in mind, we ran an excursion on our back propagation neural 

network with 27 features, training for 300 iterations.  We present the mean and standard 

deviation performance (as represented by class f-scores and overall accuracy) of the 100 

and 300 iteration versions in Table 23. 

BPNN F-Score: 
100 Iterations 

BPNN F-Score: 
300 Iterations 

  

Mean Std Dev Mean Std Dev |z| 
Accept undef undef undef undef undef 

Bye 0.788 0.064 0.788 0.066 0.002 

Clarify undef undef undef undef undef 

Continuer undef undef undef undef undef 

Emotion 0.855 0.034 0.863 0.033 0.947 

Emphasis 0.619 0.075 0.631 0.069 0.682 

Greet 0.873 0.031 0.874 0.030 0.178 

No Answer undef undef undef undef undef 

Other 0.857 0.136 0.857 0.136 0.000 

Reject undef undef undef undef undef 

Statement 0.801 0.016 0.806 0.016 1.139 

System 0.984 0.005 0.984 0.005 0.508 

Wh-Question 0.801 0.042 0.804 0.042 0.235 

Yes Answer undef undef undef undef undef 

Yes/No Question 0.772 0.030 0.770 0.033 0.165 

Overall Accuracy 0.828 0.012 0.831 0.012 0.981 

Table 23.   Back Propagation Neural Network Classifier F-Score Comparison (27 Features, 
100 vs. 300 iterations) 

In 14 of the 15 categories, mean performance either stayed the same or 

improved via training three times longer.  Mean overall accuracy also improved by 
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training longer.  However, none of the performance measures improved to a degree that 

we can confidently state that training for 300 iterations provides better results than 

training for only 100.  In addition, at a summary level, there was no indication that we are 

picking up lower frequency classes any better.  Thus, more work needs to be done to 

improve this aspect of performance.   

With our initial discussion on the performance of the back propagation 

neural network complete, we now turn to the Naïve Bayes classifier experimental results. 

b. Naïve Bayes Classifier 

The mean and standard deviation of each chat dialog act class’s precision, 

recall, and f-scores as well as the overall accuracy for the Naïve Bayes classifier are 

shown below in Table 24. 

Precision Recall F-Score  

Mean St Dev Mean St Dev Mean St Dev 
Accept 0.266 0.16 0.074 0.048 undef undef

Bye 0.82 0.116 0.56 0.1 0.658 0.081
Clarify undef undef undef undef undef undef

Continuer 0.394 0.229 0.115 0.072 undef undef
Emotion 0.838 0.035 0.765 0.043 0.799 0.03

Emphasis 0.631 0.226 0.216 0.077 0.314 0.104
Greet 0.824 0.036 0.852 0.032 0.837 0.028

No Answer undef undef 0.061 0.105 undef undef
Other undef undef 0.33 0.294 undef undef

Reject undef undef 0.062 0.066 undef undef
Statement 0.634 0.024 0.857 0.019 0.729 0.018

System 0.951 0.012 0.952 0.015 0.951 0.01
Wh-Question 0.738 0.061 0.577 0.067 0.645 0.056
Yes Answer undef undef 0.091 0.098 undef undef

Yes/No Question 0.72 0.065 0.477 0.069 0.571 0.061

Overall Accuracy 0.761 0.013 - - - -

Table 24.   Naïve Bayes Classifier Performance (27 Features) 
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As with the back propagation neural network, the overall accuracy of 

76.1% is a significant improvement over both choosing randomly (6.7% given 15 

choices) and choosing the MLE (29.9% for Statement).  Classes performing particular 

well include System (f-score of 0.951) and Greet (f-score of 0.837).  However, only three 

of the six most frequent classes had f-scores above 0.799.  Overall, the Naïve Bayes 

classifier performed significantly worse than the back propagation neural network trained 

on the same features,  And, as with the back propagation neural network, the Naïve Bayes 

classifier was unable to reliably assign a classification to lower frequency classes. 

Of note, the Naive Bayes classifier also mislabeled several classes as 

Statement as is evident by its precision value of 0.634.  The confusion matrix depicted in 

Figure 15, representative of the Naïve Bayes classifier, highlights this fact.  Again, note 

the Statement column values.   
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Accept 1 0 0 0 1 0 1 0 0 0 13 0 0 0 0 16 0.2 0.063 0.095
Bye 0 11 0 0 0 0 1 0 0 0 11 0 0 0 0 23 1 0.478 0.647

Clarify 0 0 0 0 1 0 0 0 0 0 4 0 0 0 0 5 undef 0 undef
Continuer 0 0 0 2 0 0 0 0 0 0 13 1 2 0 0 18 0.667 0.111 0.19

Emotion 1 0 0 0 74 0 3 0 0 0 26 1 0 0 0 105 0.881 0.705 0.783
Emphasis 0 0 0 0 2 5 1 0 0 0 6 0 0 0 0 14 0.625 0.357 0.455

Greet 0 0 0 0 1 0 124 0 0 0 18 1 2 0 0 146 0.838 0.849 0.844
nAnswer 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 3 0.5 0.333 0.4

Other 0 0 0 0 0 0 0 0 2 0 2 2 0 0 0 6 1 0.333 0.5
Reject 0 0 0 0 0 0 0 1 0 0 8 0 0 0 0 9 undef 0 undef

Statement 1 0 0 1 5 0 16 0 0 0 289 3 5 0 8 328 0.652 0.881 0.75
System 0 0 0 0 0 2 0 0 0 0 11 251 0 0 1 265 0.969 0.947 0.958

whQuestion 0 0 0 0 0 0 2 0 0 0 17 0 32 0 4 55 0.681 0.582 0.627
yAnswer 2 0 0 0 0 1 0 0 0 0 6 0 0 0 0 9 undef 0 undef

ynQuestion 0 0 0 0 0 0 0 0 0 0 17 0 6 0 32 55 0.711 0.582 0.64

Total Labeled 5 11 0 3 84 8 148 2 2 0 443 259 47 0 45
Test Set Accuracy: 0.78  

 

Figure 15.   Example Confusion Matrix for Chat Dialog Act Classification (Naïve Bayes, 
27 Features) 

Although the Naïve Bayes classifier is mislabeling many classes as the 

MLE (Statement), there is an explicit way to remove this effect.  Specifically, the prior 

probability term for each class, ( )iP C  can be removed from the Naïve Bayes classifier 

equation, leaving 
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 ( )No Prior
ˆ arg max |

i
j i

C Classes j

C P f C
∈

= ∏  

To ascertain the effect of this, we ran an excursion on our Naïve Bayes 

classifier, this time removing the effect of the prior class probability.  The mean and 

standard deviation performance measures for both versions of Naïve Bayes classifier are 

presented in the Table 25. 

Naïve Bayes 
F-Score: 

Naïve Bayes 
F-Score: No Prior 

  

Mean Std Dev Mean Std Dev |z| 
Accept undef undef undef undef undef 

Bye 0.658 0.081 0.607 0.069 2.654 
Clarify undef undef undef undef undef 

Continuer undef undef 0.266 0.075 undef 
Emotion 0.799 0.030 0.820 0.026 2.918 

Emphasis 0.314 0.104 0.443 0.095 5.012 
Greet 0.837 0.028 0.823 0.028 1.978 

No Answer undef undef undef undef undef 
Other undef undef undef undef undef 

Reject undef undef undef undef undef 
Statement 0.729 0.018 0.669 0.025 10.657 

System 0.951 0.010 0.954 0.009 1.034 
Wh-Question 0.645 0.056 0.676 0.049 2.302 
Yes Answer undef undef undef undef undef 

Yes/No Question 0.571 0.061 0.630 0.046 4.242 

Overall Accuracy 0.761 0.013 0.729 0.013 9.702 

Table 25.   Naïve Bayes Classifier F-Score Comparison (27 Features, Prior Class Probability 
Included/Not Included) 

As can be seen, there are significant differences between nearly all the 

classes f-scores.  Performance improved in the Continuer, Emotion, Emphasis, Wh-

Question and Yes/No Question classes by removing the prior.  However, performance 

was degraded in the Bye, Greet, and Statement classes.  In particular, Statement’s f-score 

dropped from 0.729 to 0.669 by removing the prior probability term.  Since this was the 

largest class, it had the overall effect of offsetting the f-score improvements in the other 

classes, significantly reducing overall accuracy from 76.1% to 72.9%.   
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The actual effect of removing the prior can be visualized by looking at the 

change in the confusion matrix in Figure 16, using the same training and test sets as 

presented in Figure 15. 
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Accept 4 0 0 0 1 0 0 0 0 0 9 0 0 1 1 16 0.2 0.25 0.222
Bye 1 14 0 0 0 1 0 0 0 1 6 0 0 0 0 23 0.609 0.609 0.609

Clarify 0 0 2 1 0 0 0 0 0 0 2 0 0 0 0 5 0.667 0.4 0.5
Continuer 1 0 0 4 0 0 0 0 0 0 10 0 3 0 0 18 0.167 0.222 0.19

Emotion 2 1 0 0 85 0 4 0 1 0 11 1 0 0 0 105 0.833 0.81 0.821
Emphasis 0 0 0 1 1 8 1 0 0 0 3 0 0 0 0 14 0.5 0.571 0.533

Greet 1 1 1 1 5 1 125 0 1 0 7 0 2 1 0 146 0.772 0.856 0.812
nAnswer 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 3 0.333 0.667 0.444

Other 0 0 0 0 0 1 0 0 3 0 0 2 0 0 0 6 0.5 0.5 0.5
Reject 0 1 0 1 1 0 0 1 0 1 4 0 0 0 0 9 0.1 0.111 0.105

Statement 7 5 0 12 9 1 31 3 1 7 215 3 9 4 21 328 0.736 0.655 0.694
System 1 0 0 1 0 3 0 0 0 1 8 250 0 0 1 265 0.977 0.943 0.96

whQuestion 0 0 0 2 0 0 1 0 0 0 8 0 39 0 5 55 0.65 0.709 0.678
yAnswer 3 0 0 0 0 1 0 0 0 0 5 0 0 0 0 9 0 0 undef

ynQuestion 0 1 0 1 0 0 0 0 0 0 3 0 7 0 43 55 0.606 0.782 0.683

Total Labeled 20 23 3 24 102 16 162 6 6 10 292 256 60 6 71
Test Set Accuracy: 0.752  

Figure 16.   Example Confusion Matrix for Chat Dialog Act Classification (Naïve Bayes, 
27 Features, No Prior Probability Term) 

Removing the prior probability term permits other classes to be 

recognized, yet significantly reduces the recall of the Statement class (from 289 actual 

Statements labeled as such to 215 in this example).   

With our initial discussion of the machine-learning approaches complete, 

we now turn to the effect of reducing the number of features for the methods to consider. 

2. 24 Feature Experiment Results 

As we noted earlier, some features that were intended to pick up the lower 

frequency classes did not appear to work.  Before modifying the feature set to pick up 

these classes, we first removed those ineffective features to see how it impacted the 

overall performance of the learning approaches.  Specifically, we removed feature f1 

(number of posts ago the poster made a spelling error), f25 (a word is an “even” or 

“mean” variant), and f26 (total number of users currently in the chat room).   
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We first present the results of the back propagation neural network for this 

smaller feature set.  We then present the results of the Naïve Bayes classifier using the 

smaller feature set. 

a. Back Propagation Neural Network 

The precision, recall, and f-scores for the 24 feature version of the back 

propagation neural network trained for 300 iterations are presented in Table 26.  A 

comparison with 27 feature network trained for 300 iterations is presented in Table 27.   

Precision Recall F-Score  

Mean St Dev Mean St Dev Mean St Dev 
Accept undef undef 0.289 0.153 undef undef

Bye 0.815 0.098 0.816 0.089 0.812 0.075
Clarify undef undef undef undef undef undef

Continuer undef undef 0.013 0.034 undef undef

Emotion 0.789 0.043 0.95 0.023 0.862 0.028
Emphasis 0.648 0.134 0.66 0.147 0.635 0.108

Greet 0.936 0.023 0.833 0.037 0.881 0.023
No Answer undef undef 0 0 undef undef

Other 0.887 0.185 0.834 0.208 0.832 0.161
Reject undef undef 0.068 0.107 undef undef

Statement 0.746 0.03 0.876 0.019 0.806 0.019
System 0.985 0.014 0.985 0.007 0.985 0.006

Wh-Question 0.823 0.054 0.801 0.066 0.811 0.052
Yes Answer undef undef 0 0 undef undef

Yes/No Question 0.777 0.05 0.809 0.046 0.791 0.037

Overall Accuracy 0.832 0.009 - - - -

Table 26.   Back Propagation Neural Network Classifier Performance (24 Features, 300 
iterations) 
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BPNN F-Score: 
300 Its, 24 Feats 

BPNN F-Score: 
300 Its, 27 Feats 

  

Mean Std Dev Mean Std Dev |z| 
Accept undef undef undef undef undef 

Bye 0.812 0.075 0.788 0.066 1.291 
Clarify undef undef undef undef undef 

Continuer undef undef undef undef undef 
Emotion 0.862 0.028 0.863 0.033 0.211 

Emphasis 0.635 0.108 0.631 0.069 0.152 
Greet 0.881 0.023 0.874 0.030 0.929 

No Answer undef undef undef undef undef 
Other 0.832 0.161 0.857 0.136 0.675 

Reject undef undef undef undef undef 
Statement 0.806 0.019 0.806 0.016 0.022 

System 0.985 0.006 0.984 0.005 0.231 
Wh-Question 0.811 0.052 0.804 0.042 0.550 
Yes Answer undef undef undef undef undef 

Yes/No Question 0.791 0.037 0.770 0.033 2.364 

Overall Accuracy 0.832 0.009 0.831 0.012 0.482 

Table 27.   Back Propagation Neural Network Classifier F-Score Comparison (24 Features 
vs. 27 Features, 300 Iterations) 

As can be seen in the comparison table, for the most part there were no 

significant changes in any of the f-scores.  However, there was a significant improvement 

in Yes/No Question classification (f-score of 0.791), an important chat dialog act 

category.  Moreover, the overall performance of the 24 feature, 300 iteration back 

propagation neural network (83.2% accuracy) is significantly better than its 27 feature, 

100 iteration counterpart (82.8% accuracy). 

Thus, the removal of three features to the back propagation neural network 

appears to have no impact on overall performance.  This is an important finding, since we 

have identified features that appear to be unnecessary in the classification decision 

process.  We now turn to the impact of removing those three features on the Naïve Bayes 

classifier. 
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b. Naïve Bayes Classifier 

The precision, recall, and f-scores for the 24 feature version of the Naïve 

Bayes classifier are presented in Table 28.  A comparison with 27 feature version is 

presented in Table 29.   

Precision Recall F-Score  

Mean St Dev Mean St Dev Mean St Dev 
Accept 0.346 0.198 0.104 0.067 undef undef

Bye 0.864 0.084 0.573 0.12 0.681 0.1
Clarify undef undef undef undef undef undef

Continuer 0.345 0.291 0.084 0.071 undef undef

Emotion 0.827 0.045 0.833 0.038 0.829 0.033
Emphasis 0.558 0.216 0.244 0.105 0.33 0.125

Greet 0.848 0.027 0.847 0.036 0.847 0.027
No Answer undef undef 0.099 0.098 undef undef

Other undef undef 0.276 0.289 undef undef

Reject 0.344 0.357 0.058 0.058 undef undef

Statement 0.638 0.025 0.869 0.021 0.736 0.02
System 0.967 0.012 0.951 0.013 0.959 0.008

Wh-Question 0.735 0.074 0.618 0.08 0.668 0.061
Yes Answer undef undef 0.089 0.092 undef undef

Yes/No Question 0.762 0.074 0.526 0.068 0.62 0.06

Overall Accuracy 0.773 0.014 - - - -

Table 28.   Naïve Bayes Classifier Performance (24 Features) 



 90

 
Naïve Bayes 

F-Score: 24 Feats 
Naïve Bayes 

F-Score: 27 Feats 
  

Mean Std Dev Mean Std Dev |z| 
Accept undef undef undef undef undef 

Bye 0.681 0.100 0.658 0.081 0.982 
Clarify undef undef undef undef undef 

Continuer undef undef undef undef undef 
Emotion 0.829 0.033 0.799 0.030 3.714 

Emphasis 0.330 0.125 0.314 0.104 0.542 
Greet 0.847 0.027 0.837 0.028 1.350 

No Answer undef undef undef undef undef 
Other undef undef undef undef undef 

Reject undef undef undef undef undef 
Statement 0.736 0.020 0.729 0.018 1.343 

System 0.959 0.008 0.951 0.010 3.262 
Wh-Question 0.668 0.061 0.645 0.056 1.522 
Yes Answer undef undef undef undef undef 

Yes/No Question 0.620 0.060 0.571 0.061 3.116 

Overall Accuracy 0.773 0.014 0.761 0.013 3.352 

Table 29.   Naïve Bayes Classifier F-Score Comparison (24 Features vs. 27 Features) 

As can be seen in the comparison table, there are f-score improvements in 

the 24 feature Naïve Bayes classifier across the board.  In particular, there are significant 

improvements in Emotion (f-score of 0.829), System (f-score of 0.959), and Yes/No 

Question (f-score of 0.620) categories.  These improvements led to a significant 

improvement in the Naïve Bayes classifier’s overall accuracy (77.3%, up from 76.1% for 

the 27 feature version). 

With our presentation of the chat dialog act classification results complete, 

we now turn to a general discussion of the leaning task as well as potential improvements 

to the classifier learning approaches. 
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3. Discussion 

Unfortunately, time did not permit us to formally examine the misclassified posts.  

However, we noticed that for both learning methods, several of the “second-highest” 

classification scores on the test set were in fact the “true” dialog act class label.  In 

addition, we noticed that some of the incorrect classification decisions that both learning 

approaches made were arguably “correct”.  By this we mean that a different human 

annotator could easily arrive at the same conclusion that the machine-learning approach 

reached.  Thus, the chat dialog act experiment results, along with these informal findings, 

lead to several avenues for improvement.   

First, we could relax the condition that a post can only hold one chat dialog act 

class label.  Obviously, the original simplifying assumption of one dialog act class per 

post is not a perfect fit for what actually occurs.  For example, by its very nature a single 

post can potentially contain a greeting to one person, followed by asking a question to 

another, followed by rejecting a statement of a third person.  Thus, permitting a post to 

have multiple dialog act labels addresses this issue. 

A better approach, however, would be to segment chat dialog acts at a finer level.  

Segmenting at this “utterance” level would provide a less ambiguous decision for the 

classifier to make, perhaps improving its performance.  However, based on the split turn 

phenomenon characterized by Zitzen and Stein, utterances are not necessarily limited to 

the confines of a single post, and may in fact span two or more posts [5].  Thus, while 

segmenting at the utterance level may improve the classifier’s performance when 

considered alone, overall system performance may suffer due to the more difficult 

utterance segmentation phase.  There are methods to segment at the utterance level; as 

discussed in Chapter II, Ivanovic developed an approach for dialog act classification of 

instant messaging (IM) systems [26].  That being said, his task was somewhat easier, 

since in IM there are only two participants with one thread of conversation going on at a 

time.  Segmentation at the utterance level for chat might require the separation of the 

various conversation threads first, which is an area of active research in and of itself.  

Nevertheless, Ivanovic’s and others’ utterance segmentation approaches better match 
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actual discourse structure, and thus merit serious consideration for improving the 

performance of the chat dialog act classification approaches.   

Another avenue for classification improvement includes better selection of the 

chat dialog classes themselves.  As noted in Chapters 2 and 3, Stolcke et al defined 42 

dialog act classes for spoken conversation.  For Wu et al’s purposes (as well as ours), 

many of Stolcke et al’s classes were collapsed into a single chat dialog act class, 

Statement.  Since Statement had a low precision and yet was the highest frequency class, 

dividing it up into more specific classes (e.g. Opinion as well as Statement) should help 

the classifiers in making decisions.  This is because the resulting, more specific, class’s 

prior probabilities will be lower.  In addition, even though the high frequency System 

dialog act classification was quite successful, it too should be divided up.  This is because 

it contained a number of phenomena that deserve better discrimination, e.g. commands to 

the chat room system/chatbots versus system/chatbot responses.  Of course, additional 

classes require either additional or better features to help discriminate between them. 

We took a supervised approach in our original selection of features to measure, 

e.g., we knew that System posts contained specific words in all-capital letters that we 

automatically identified during the training phase.  That being said, it is worthwhile to 

consider unsupervised feature learning.  For example, simple unigram and/or bigram 

frequencies alone might permit better discrimination.  We in fact used this approach, 

albeit in a targeted fashion.  For example, features that identified words found in Greets, 

Byes, Emotions, Yes/No Answers, and Accepts/Rejects (f3-f7 and f12-f16 from Table 11) 

were actually collected by identifying words tagged as “UH” in the training sets within 

those post categories.  Permitting the Naïve Bayes classifier to identify and determine 

probabilities for all unigrams/bigrams across a training set might enable better 

discrimination of lower frequency chat dialog act classes in a test set. 

Finally, combined with better classes and features, different machine-learning 

approaches may permit better classification.  For example, case-based reasoning, which 

measures the “distances” of the instance to be classified from those in a labeled database, 

could provide more accurate classification of low frequency classes.  That being said, the 

number of comparisons to make (e.g., distance to a single neighbor, k-nearest neighbors, 
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class mean, etc.) as well as the distance measure definition itself (e.g. Euclidean, city-

block, etc) will have an impact on classification performance.  A fuller description of 

case-based reasoning approaches can be found in Mitchell [23] and Luger [24].  Another 

learning method that bears consideration is the use of HMMs.  Stolcke et al used HMMs 

to identify the most likely sequence of dialog act classes in a conversation [17].  In that 

case, the dialog acts were the hidden states, while features of the utterances were the 

observed sequence.  However, Stolcke et al were dealing with Switchboard conversations 

in series; chat involves multiple, interleaved conversations in parallel.  Thus, use of this 

approach may require the separation of conversation threads first. 

With the presentation of our experiment results complete, we conclude with 

summary of our results and recommendations for future work. 
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V. SUMMARY AND FUTURE WORK 

A. SUMMARY 

During the course of our research, we preserved 477,835 chat posts and associated 

user profiles in an XML format for future investigation.  We privacy-masked 10,567 of 

those posts, permitting other researchers to replicate and improve upon our results.  We 

annotated each of the privacy-masked corpus’s 45,068 tokens with a part-of-speech tag.  

Using the Penn Treebank, we improved part-of-speech tagging performance from 87.0% 

mean accuracy (HMM tagger using only chat data) to 90.8%.  This represents a reduction 

in total error of over 29%.  We also annotated each of the privacy-masked corpus’s 

10,567 posts with a chat dialog act.  Using a neural network with 23 input features, we 

achieved 83.2% mean dialog act classification accuracy. 

Although these results are notable based on the privacy-masked corpus’s size, we 

believe there are a number of things that we can do to significantly improve on these 

results as well as extend the usefulness of the corpus for other NLP tasks.  We now 

present this potential future work.   

B. FUTURE WORK 

Our recommendations for future work are broken into five tasks: 1) Improve part-

of-speech tagging on the existing privacy-masked corpus; 2) Improve chat dialog act 

classification on the existing privacy-masked corpus; 3) Perform syntax analysis on the 

existing privacy-masked chat corpus; 4) Use information from the previous three tasks to 

perform semantic NLP tasks of entity identification/disambiguation, conversation thread 

detection/separation, and author profiling; and 5) Increase the size of the privacy-masked 

chat corpus. 

1. Part-of-Speech Tagging Improvements 

As discussed in Chapter IV, Section B.4, we recommend the following three 

actions to improve part-of-speech tagging.  First, we recommend tokenizing all 
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contractions, including those that do not contain an apostrophe.  We present a list of all 

contractions in the privacy-masked chat corpus that do not contain apostrophes along 

with an alternate tokenization in Appendix B.  Tokenizing these contractions into 

separate words, especially high frequency ones such as “ill” (for “I will”) should permit 

sophisticated part-of-speech taggers to take advantage of more likely tag sequences found 

in other domains.   

Second, we recommend retagging many of the emoticons and chat abbreviations 

with one or possibly two new tags, as opposed to the interjection tag, “UH”.  Based on 

our observations of the privacy-masked chat corpus, emoticons and chat abbreviations 

generally have different distributions than interjections, and thus merit a new tag unique 

to the chat domain.  We present a list of all emoticons and chat abbreviations found in the 

privacy-masked corpus in Appendices C and D, respectively.  Any retagging of 

emoticons and abbreviations should be approached carefully, however.  For example, 

chat abbreviations such as “wtf” and “brb” are often used as equivalents to “what” 

(tagged “WP”) and “bye” (tagged “UH”), respectively.  Thus, a simple find/replace will 

not suffice when retagging these abbreviations. 

Finally, we recommend optimizing the amount of data used from other domains 

to support part-of-speech tagging.  For example, if chat exhibits lexical properties more 

in common with written as opposed spoken domains, it may make sense to use more 

training data from the written domain itself.  Our current best-performing taggers use all 

of the data provided in the Brown (written), Wall Street Journal (written), and 

Switchboard (transcribed spoken) corpora; adjusting these ratios could improve more 

sophisticated tagger performance. 

2. Chat Dialog Act Classification Improvements 

As discussed in Chapter IV, Section C.3, we recommend the following three 

actions to improve chat dialog act classification.  First, we recommend the use of 

additional and/or better classes for the dialog acts themselves.  Statements of fact and 

opinions are currently grouped into a single Statement class; we believe it makes sense to 

differentiate between the two by labeling each a separate class.  Similarly, we believe it 
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makes sense to divide the System class up into user commands to the chat room system 

(and/or chatbots) as well as responses from the system (and/or chatbots).  Finally, the 

need for a Continuer class is not necessary if the next action, utterance-level 

segmentation, is implemented.   

Segmentation at the utterance-level (instead of post-level) would permit a more 

specific dialog act classification to be made, thus reducing the likelihood that more than 

two classes might apply to a single utterance.  Utterance-level segmentation has been 

performed in both spoken and CMC domains, for example, [17] and [26], respectively.  

An additional benefit of utterance-level segmentation is that it might also improve part-

of-speech tagging performance when training data includes non-chat domains.  This is 

because the context associated with part-of-speech tagging should not cross sentence 

boundaries.  And yet, a chat post can include multiple sentences.  Under utterance-level 

segmentation, each individual sentence in a post would be a separate utterance, and could 

thus take better advantage of training data from non-chat domains such as the various 

Penn Treebank corpora. 

As discussed in Chapter IV Section C, we found that some of the dialog act 

features we used were ineffective, and that overall accuracy actually improved once we 

removed them.  As such, we recommend a complete review of the features used to 

support chat dialog act classification.  In particular, we believe that there is great potential 

for n-gram distributions, used in conjunction with the Naïve Bayes classifier, to 

significantly increase classification accuracy.   

3. Syntax Analysis 

Throughout this research we have referred to the syntax, or structure, of language 

in general and chat in particular.  The ability to automatically parse a sentence (or 

post/utterance) into a tree structure is an important step in determining its meaning.  An 

example parse of a Wall Street Journal sentence is shown in Figure 17.  Natural language 

syntax can be approximated by probabilistic context free grammars (PCFGs), which are 

simply context free grammars with probabilities attached to the production rules.  As with 

stochastic part-of-speech taggers, these probabilities are learned during a training phase 



 98

with labeled corpora.  In fact, the Penn Treebank gets its name because (in addition to 

part-of-speech tags) it contains parses, or trees, for each of the sentences from its various 

corpora.  A description of how PCFGs can be applied to parsing can be found in [13] and 

[14]. 

S

VP

NP

NP

ADJP

ADVP

DT NN NN VBD RB RBR JJ NNS .
The real-estate market suffered even more severe setbacks .

 
Figure 17.   Example Wall Street Journal Sentence Parse (From [20]) 

Because of its importance to other NLP tasks, we highly recommend the addition 

of parses at the post and/or utterance level for the privacy-masked chat corpus.  Using the 

same bootstrapping approach discussed in Chapter III, Section A.5, an initial parser could 

be trained on data from the Penn Treebank.  This parser would then be used to assign 

initial parses to a subset of the privacy-masked corpus.  These parses would then be hand-

verified.  Finally, a new parser would be built, trained on both Penn Treebank and chat 

data to bootstrap the parsing to the full privacy-masked corpus data set.  Once the full 

data set had been parsed, a parser would then be built to optimize performance on chat 

based on data from chat as well as non-chat domains.  Indeed, Hwa demonstrated in [27] 

that grammars from sparsely labeled training data (e.g., only higher-level constituent 
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labels for chat data) can use an adaptation strategy which produces grammars that parse 

almost as well as grammars induced from fully-labeled corpora.  

4. Other Semantic NLP Applications 

There are several other NLP tasks that can be investigated immediately with the 

current version of the privacy-masked chat corpus.  For example, the corpus’s part-of-

speech and dialog act classification information can be used in conjunction with other 

features to improve upon Lin’s author profiling work [11].   

Also, there is the great potential to investigate entity disambiguation algorithms 

using the privacy-masked corpus as well as the corresponding original sessions that 

contain actual user names.  As noted in Chapter III Section A.2, users are referred to both 

with their screen names as well as many variants of those names.  This is perhaps another 

unique phenomenon that separates chat from both written and spoken domains.  These 

experiments could be initiated fairly quickly, since the already-accomplished privacy-

masking activity covers most of the hand-annotation effort required for entity 

disambiguation (with pronominal disambiguation still to do). 

Finally, knowledge of both the post’s author as well as its dialog act classification 

could be used to detect and separate the multiple conversation threads within a session in 

the privacy-masked corpus.  These experiments, however, would first require the 

investigator to identify and separate the threads for reference, which could be time-

consuming. 

5. Expand Privacy-Masked Chat Corpus 

Our final recommendation for future work in this area is to increase the size of the 

privacy-masked corpus using the bootstrapping process described in Chapter III, Section 

A.5.  The more data we have from the chat domain, the better any stochastic NLP 

technique used in a chat application should work.  As noted in Chapter III, we highly 

recommend multiple annotators participate during the hand-verification step, using an 

established framework to guide them in their annotation decisions, whether they involve 

part-of-speech tagging, dialog act classification, syntax parsing, etc.  Multiple annotators 
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serve two functions.  First, they help provide a better corpus, since simple annotation 

mistakes can be caught through multiple eyes watching the process.  More importantly, 

though having multiple annotators permits one to establish the inter-annotator agreement 

along with the associated Kappa statistic, which normalizes agreement to account for 

chance.  Inter-annotator agreement can then be used to establish the “gold standard,” or 

upper bound best possible performance, for a particular machine-learning method.   
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APPENDIX A: ACRONYMS 

C2 Command and control 

CMC Computer-mediated communication 

HMM Hidden Markov Model 

IM Instant messaging 

LDC Linguistic Data Consortium 

PCFG Probabilistic context-free grammar 

POS Part-of-speech 

MLE Maximum likelihood estimate 

NLP Natural language processing 

WSJ Wall Street Journal 

XML Extensible Markup Language 
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APPENDIX B: CHAT CONTRACTIONS 

Word Count Alternate 
Tokenization Word Count Alternate 

Tokenization 
alot 7 a lot itz 1 it z

alotta 1 a lot of ive 1 I ve

arent 2 are nt lotsa 1 lots a

couldnt 3 could nt lotta 1 lott a

didnt 28 did nt offa 1 off a

dint 1 di nt shes 4 she s

doesnt 5 does nt shouldnt 1 should nt

donno 3 don no shouldve 1 should ve

dont 77 do nt thats 45 that s

dontcha 1 do nt cha tryina 1 tryin a

dunno 7 dun no ur 21 u r

hafta 2 haf ta wana 8 wan a

havent 3 have nt whatcha 2 what cha

hes 4 he s whats 41 what s

hows 8 how s whys 1 why s

howz 2 how z wonna 1 wonn a

ill 9 i ll wouldnt 5 would nt

im 149 i m wuts 1 wut s

ima 8 i m a yall 12 y all

imma 3 i mm a youre 3 you re

isnt 3 is nt youve 1 you ve

its 69 it s

Table 30.   Contractions Encountered in Privacy-Masked Chat Corpus 
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APPENDIX C: CHAT EMOTICONS 

Emoticons found in the privacy masked chat corpus are shown in Table 31.  Most 

are apparent, although two classes bear specific mention.  The first, indicated by three or 

more open/closed parenthesis/brackets such as “)))))”, signify one half of a “hug”.  Thus, 

the following indicates 10-19-40sUser111 is being given a hug—(((((10-19-

40sUser111))))).  The second, indicated by “:word:”, signify a command to the chat room 

system to display one of its built-in emoticons.  Thus, the following indicates displaying a 

graphical emoticon showing a smiley face drinking a beer—“:beer:”. 

( o Y o ) ))))))) :/ =( 

((( )))))))) :@ =) 

(((( ))))))))) :D =A:A=-\ 

((((( )))))))))) :O =/ 

(((((( ))))))))))) :P =D 

((((((( )))))))))))) :] =O 

(((((((( ))))))))))))) :beer: =[ 

((((((((( )))))))))))))) :blush: =] 

(((((((((( ))))))))))))))) :love: =p 

((((((((((( ))))))))))))))))) :o * >:-> 

(((((((((((( ))))))))))))))))))) :p @$$ 

((((((((((((( ))))))))))))))))))))) :tongue: [[[[[[[[[[[[[[[[[[ 

(((((((((((((( )))))))))))))))))))))) :| ]:) 

((((((((((((((( )))))))))))))))))))))))))))) ;) ]]]]]]]]]]]]]]]]]]]]] 

((((((((((((((((( ))))))))))))))))))))))))))))))) ;-( ^_^ 

(((((((((((((((((( )? ;-) _ 

(((((((((((((((((((( +*+*+*+* ;0 o.0 

((((((((((((((((((((( -( ;] o.O 

((((((((((((((((((((((( -_- <3 o.o 

(((((((((((((((((((((((( =-s <3's o0 

((((((((((((((((((((((((( 3333333 <33 o0o 

(((((((((((((((((((((((((( :( <333 o<|=D 

(((((.. :) <3333 oO 

(__I__) :-( <33333 oOo 

))) :-) <333333333 o_0 

)))) :-@ <3333333333333333 o_O 

))))) :-o <33333333333333333 xD 

Table 31.   Chat Emoticons Encountered in Privacy-Masked Chat Corpus 
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APPENDIX D: CHAT ABBREVIATIONS 

Abbreviation Definition Abbreviation Definition 
afk away from keyboard ltnc long time no chat 

bbl be back later ltns long time no see 

bbs be back soon ltnsea ltns phonetic 

brb be right back ltr later 

brbbb brb variant nm not much 

btw by the way omg oh my god 

cya see you omggg omg variant 

gm good morning rofl rolling on floor laughing 

gn good night rotflmao rolling on the floor laughing 
my ass off 

gtg got to go t/c take care 

j/k just kidding t/y thank you 

j/p just playing tc take care 

jk just kidding tdr turbo diesel register 

jw just wondering ty thank you 

lawl laughing out loud 
(phonetic) 

tyvm thank you very much 

lmao laughing my ass off w/b welcome back 

lmaoo lmao variant wb welcome back 

lmaooo lmao variant wc who cares 

lmaoooo lmao variant wth what the hell 

lmaooooo lmao variant wtf what the f**k 

lmfao laughing my f**king 
ass off 

y/w your welcome 

lol laughing out loud yvw you very welcome 

lolol lol variant yw your welcome 

lolololll lol variant yw's yw variant 

lool lol variant 

Table 32.   Chat Abbreviations Encountered in Privacy-Masked Chat Corpus 
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