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Abstract

Language usage over computer mediated dis-
courses, like chats, emails and SMS texts, signif-
icantly differs from the standard form of the lan-
guage. An urge towards shorter message length
facilitating faster typing and the need for seman-
tic clarity, shape the structure of this non-standard
form known as thetexting language. In this work
we formally investigate the nature and type of com-
pressions used in SMS texts, and based on the find-
ings develop a word level model for the texting lan-
guage. For every word in the standard language, we
construct a Hidden Markov Model that succinctly
represent all possible variations of that word in the
texting language along with their associated obser-
vation probabilities. The structure of the HMM is
novel and arrived at through linguistic analysis of
the SMS data. The model parameters have been
estimated from a word-aligned SMS and standard
English parallel corpus, through machine learning
techniques. Preliminary evaluation shows that the
word-model can be used for decoding texting lan-
guage words to their standard counterparts with
more than 80% accuracy.

1 Introduction
While communicating over texting media, such as chats,
emails and short messages over mobile phones (SMS), users
have a tendency to use a non-standard form of the language
that disregards grammar, punctuation and spelling rules. In
order to type faster, especially while using a small keyboard
like that of the mobile phones, users employ a large number of
compression techniques to reduce the message length. Com-
monly used abbreviations, shorter phonetic substitutions,
deletion of words and characters, are some of the popular
methods for shortening the message length. Nevertheless, the
characters and words cannot be deleted arbitrarily, as it may
seriously hamper the understandability of the message. Thus,
two opposing forces - shorter messages and semantic unam-
biguity - shape the structure of this compressed non-standard

∗The work has been partially supported by Media Lab Asia re-
search funding.

form, called theNetSpeak[Crystal, 2001] or thetexting lan-
guage(http://en.wikipedia.org/wiki/Textinglanguage).

The objective of the current work is to study as well as for-
mally model the characteristics of the texting language (TL),
and based on the compression model so obtained, construct
a decoder from a TL word to its standard form. Ideally, we
would like to construct a sentence level decoder for TL, such
that given an input sentence in the TL, the decoder should
be able to generate the corresponding standard form. This is
illustrated through the following example.

Input: btw wenz ur flt 2moro
Output: By the way, when is your flight tomorrow?

However, the scope of the current work is limited to word
level analysis and modeling, which forms the first step
towards a sentence level decoder.

We model the problem as anoisy channelprocess; we as-
sume that the standard word is compressed or distorted to the
TL form, while being transmitted over the hypothetical noisy
channel. Hidden Markov Models (HMM)[Rabiner, 1989]
have been used to characterize the stochastic properties of
the noisy channel. In order to learn the characteristics of
the noisy channel (or equivalently the TL), we gathered 1000
English SMS texts fromhttp://www.treasuremytext.com. The
website hosts a large number of SMS texts in several lan-
guages uploaded by anonymous donors. The SMS texts were
manually translated to their standard English form and au-
tomatically aligned at the word level using a heuristic algo-
rithm. The resulting 20000 word parallel-corpus has been
inspected to formulate the structure of the word level HMM.
The HMM parameters are estimated from the training cor-
pus using machine learning techniques. Even though only
English SMS texts have been used here as the primary TL
data, it is representative of the TL used over other computer
mediated discourses as well[Crystal, 2001; Herring, 2001].
Moreover, the proposed model makes no language specific
assumptions and therefore, can be suitably trained for the TL
of other languages.

A decoder from TL to the standard language has several
practical applications including search engines and automatic
correction tools for noisy text documents such as blogs, chat-
logs, emails, ASR transcripted data, and call center data.
Non-standard spellings and grammatical usage is very com-
mon over the web. Therefore, a search engine for noisy texts
(say blogs, chatlogs or emails) must be immune to the several
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TL variants of a word. For example, given a query “transla-
tor”, a search engine is expected to also return the webpages
with words like “transl8or”, “trnsl8r”, “trnsltr”, etc. This can
be readily achieved through a word level decoder from the
TL to standard language. Similarly, owing to a large number
of spelling variations, search for proper nouns also calls for
appropriate normalization. For instance, we find several vari-
ations for the name “Saurav Ganguly” in the web (“Saurabh
Ganguly”, “Sourav Ganguli”, “Sourabh Ganguly”, etc.). As
we shall see shortly, the proposed model for TL can also ef-
ficiently capture the variations in proper nouns. Yet another
application of this technique could be in text-to-speech sys-
tems that read out webpages, emails and blogs to the visually
challenged.

The structure of the TL and its socio-cultural effects have
been a subject matter of diachronic and socio-linguistic stud-
ies for the past two decades (see[Crystal, 2001; Herring,
2001] and references therein). Researchers have studied
the social communication patterns[Grinter and Eldridge,
2001] as well as the linguistic structures[Nishimura, 2003;
Palfreyman and al Khalil, 2003] used in TL. However, we do
not know of any work on decoding of TL to the standard form,
except for a very recent work on chat text normalization[Xia
et al., 2006]. On the other hand, the compression model de-
scribed here can provide deeper insights into the phenomenon
of language change over the texting medium, that is of signif-
icant interest to researchers in diachronic linguistics.

The rest of the paper is organized as follows. Section 2
presents a noisy channel formulation of the problem; section
3 describes the creation of training data and enumerates some
of the observations made on the data. On the basis of the ob-
servations, in section 4 we describe the structure of the HMM
for the words of the standard language. Section 5 discusses
the learning algorithm for estimation and generalization of
the HMM parameters. The evaluation results of the model
is presented in Section 6. Section 7 concludes the paper by
summarizing the contributions and listing out possible im-
provement schemes.

2 Noisy Channel Formulation

Let S = s1 s2 . . . sl be a sentence in the standard form,
wheresi represents the tokens including words, punctuations
and abbreviations. WhenS is transmitted through the noisy
channel, it is converted toT = t1 t2 . . . tl, whereT is the
corresponding sentence in TL andti is the transmitted form
for the tokensi. The noisy channel is characterized by the
conditional probabilityPr(T |S). In order to decodeT to the
corresponding standard formδ(T ), whereδ is the decoder
model, we need to determinePr(S|T ), which can be speci-
fied in terms of the noisy channel model as follows.

δ(T ) = argmax
S

Pr(T |S)Pr(S) (1)

Under the assumption that the compressed formti of si de-
pends only onsi, but not the context, we obtain the following

relation.

δ(T ) = argmax
S

[ l∏
i=1

Pr(ti|si)
]
Pr(S) (2)

Thus, the decoding modelδ for a TL sentence can be ab-
stracted out into two distinct levels: (1) theword model,
Pr(ti|si) and (2) the language model, Pr(S). This is
a very common technique used in several NLP systems
such as speech recognition[Jelinek, 1997], machine transla-
tion [Brownet al., 1993] and spell checking[Kernighanet al.,
1990]. Since language model is the common part of all such
NLP systems and well studied in the literature, we shall not
elaborate on it; rather the objective of this work is to develop
an appropriate word model for TL.

At this point, it might be worthwhile to inspect the validity
of the aforementioned assumption made regarding word-to-
word transmission. Although it is quite reasonable to assume
that for TL the compression applied on a word is independent
of its context, a significant drawback of the assumption lies
in the fact that often words are deleted or combined during
typing. For instance in the input-output pair of sentences cited
in the example in section 1, if we assume that a word for word
translation has taken place, then the corresponding alignment
is (ε represents the null symbol i.e. the deletion of a token)

S T
1 By b
2 the t
3 way w
4 , ε
5 when wen
6 is z
7 your ur
8 flight flt
9 tomorrow 2moro

10 ? ε

However, in this caseT will not reflect the tokenization
shown in the above alignment, since the delimiter (white
space) is missing between the tokens 1 and 2, 2 and 3, and
5 and 6. To solve this issue, a more general formalism like
the IBM Models[Brown et al., 1993] could have been used,
where phrases can be aligned to phrases. However, that would
be an overkill, because manual inspection of the TL data re-
veals that intentional deletion of space takes place only under
two specific situations: (1) for commonly used abbreviations
and (2) for certain grammatical categories like the auxiliaries
(“when is” to “wenz” or “how are” to “howz”) and negative
marker (“are not” to “aint” or “would not” to “wudnt”).

3 Creation of Training Data
The formulation of the compression characteristicsPr(t|s),
wheret is a token of the texting language ands a word in the
standard form, demands the information about the variations
of a word over the texting medium and their probabilities. In
order to gather realistic TL data we created a 20000 word
aligned corpus of SMS texts and standard English. In this
section we report the process of acquiring this data and some
observations made on it.
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3.1 Data Collection
There are a few websites that host a good amount of medium
specific TL data. We chose to work with SMS data, because
apparantly it features the maximum amount of compression
and thus, is the most challenging one to model. The reason
for this extreme brevity is presumably an effect of the small
number of keys (9 to be precise) used for typing the message
over cell phones, which necessitates multiple key presses for
entering a single character (eg. 4 key presses are required to
type in the characters ‘s’ or ‘z’).

The websitehttp://www.treasuremytext.comhosts a huge
number of SMS texts in a large number of languages, which
have been donated by anonymous users. The messages are
not indexed by languages and many of them are written using
more than one language. A large number of messages have
been downloaded from the site, from which around 1000 En-
glish SMS texts are collected such that

a. The texts are written only in English, and contain no
word written in any other language.

b. There is at least one misspelling in the message. This
criterion is important because often messages are typed
using the T9 mode1 and therefore, does not reflect the
TL pattern. In other words, it would be misleading to
consider the texts entered using T9 mode as instances of
TL.

The SMS texts have been manually translated to their stan-
dard English form. The proper nouns (names of people,
places etc.) have not been translated, but replaced by a tag
< NAME > in both the TL and standard data. There are
around 20000 tokens (words) in the translated standard text
out of which around 2000 are distinct.

3.2 Alignment
The translated corpus has been automatically aligned at
the word level using a heuristic algorithm. The algorithm
searches for sites (tokens) in the original and translated texts,
which can be aligned to each other withhigh confidence. We
define these sites aspivots. The unaligned words between two
consecutive pivots are then recursively aligned by searching
for more pivots between them; though during each recursive
call the conditions of alignment are further relaxed. A sketch
of the algorithm is provided below.

1. Input: SMS textT = t1 t2 . . . tk, translated standard
English textS = s1 s2 . . . sl, whereti andsj are tokens
delimited by white spaces.

2. We introduce two hypothetical start symbolst0 ands0 at
the beginning ofT andS, and two similar symbolstend

andsend to mark the end of the sequences respectively.
t0 is aligned tos0 andtend to send, which forms the two
hypotheticalpivotsat the beginning and the end of the
texts.

1T9 stands forText on 9 Keys, which is a predictive texting
method for mobile phones. The technology allows words to be en-
tered by a single key press for each letter, as opposed to the standard
method, in which selecting one letter often requires multiple key
presses.

tomoz (25) tomora (4) 2moro (9) tom (2)
tomorow (3) tmorro (1) tomrw (5) 2mro (2)
tomoro (12) morrow (1) tomo (3) tomm (1)
tomorrow (24) tomra (2) tomor (2) moro (1)

Table 1: The variations of the word “tomorrow” and their
occurrence frequencies observed in the SMS corpus

3. Eachti is compared withsi′ and other tokens around
si′ , where the value ofi′ is computed on the basis ofi,
l andk. If ti = sj for somej within the local window
aroundi′, sj is declared as the translation ofti and this
alignment gives rise to a new pivot. In case an exact
match is not found, the alignment ofti is defered.

4. Suppose there arep + 2 pivots including the two hypo-
thetical boundary pivots. These pivots segmentT andS
into p + 1 non-overlapping regions, where the tokens in
a particular region ofT align to the tokens in the corre-
sponding region ofS.

5. If a region has 0 or 1 token in either ofT or S, they are
trivially aligned.

6. If both the regions have more than one token, the char-
acter level similarity between all pairs(ti, sj) of tokens
within the region are computed using the Soundex algo-
rithm [Odell and Russell, 1918].

7. The best matches are aligned and declared as new pivots,
and the process continues recursively, until all the tokens
are aligned.

The accuracy of the alignment algorithm is around 80%.

3.3 Extraction of Word-Variant Pairs
From the aligned corpus, a list of the unique English words
and their corresponding variations in the SMS texts were ex-
tracted along with the occurrence frequencies. The list was
manually cleaned to remove noise introduced due to error in
alignment. Out of the 2000 distinct English words, only 234
occur at least 10 times in the corpus, and thus, can provide
useful information about the nature of the TL; the other words
being quite infrequent cannot be used for statistical learning
purpose. The total number of variants corresonding to these
234 frequent words is 702. This extracted list of 234 words
{w1, w2, . . . w234}, and their corresponding variation charac-
teristics{〈vi

1, f
i
1〉, 〈vi

2, f
i
2〉 . . . 〈vi

mi
, f i

mi
〉}, wherevi

j andf i
j

denote thejth variation and its frequency for the wordwi re-
spectively, constitutes our word level training corpus. Table 1
shows the variation characteristics of the word “tomorrow”.

3.4 Observations
On an average there are 83 characters in the SMS text for
every 100 characters in the corresponding standard English
text. We also observe the following common techniques for
compression of the words.

• Deletion of characters: The commonly observed pat-
terns include deletion of vowels (as in “msg” for “mes-
sage”), deletion of repeted character (as in “tomorow”
for “tomorrow”) and truncation (as in “tom” for “tomor-
row”).
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• Phonetic substitution: Examples are “2” for “to” or
“too”, “lyk” for “like”, “rite” for “right” etc.

• Abbreviation: Some frequently used abbreviations are
“tb” for “text back”, “lol” for “laughs out loud” etc.

• Dialectal and informal usage: Often multiple words
are combined into a single token following certain di-
alectal conventions. For example, “gonna” is used for
“going to”, “aint” is used for “are not”, etc.

• Deletion of words: Function words (e.g. articles) and
pronouns are commonly deleted. “I am reading the
book” for example may be typed as “readin bk”.

It is interesting to note that often more than one of these
compression techniques are used over a single word to
achieve maximal reduction in length. The token “2mro” for
example is obtained from “tomorrow” through phonetic sub-
stitution as well as character deletion.

4 Word Model
The purpose of the word model is to capture the intentional
compressions applied by the user to shorten the length of
the word as well as the unintentional errors made during ty-
ing. There are several works related toautomatic speech
recognition in general (see[Jelinek, 1997] and references
therein) andgrapheme to phoneme conversion[Taylor, 2005]
in particular that utilize HMM to model the variations in pro-
nunciation and spellings. Inspired by such works, here we
model each wordw in the standard language as an HMM.
Let w = g1g2 . . . gl, where gi represents a character or
graphemeof the standard language. Let̃w = p1p2 . . . pk

be the pronunciation ofw, wherepi represents aphonemeof
the standard language2. For example, ifw = ‘today’, then
w̃ = ‘/T/ /AH/ /D/ /AY/’.

Suppose the wordw = g1g2 . . . gl is typed without any
compression or error. This situation can be modeled using
a left-to-right HMM [Rabiner, 1989] having l + 2 states as
follows. There is astart stateand anend statedenoted by
S0 andSl+1 respectively. The only observation associated
with these two states is the special symbol $, which marks
the beginning and the end of a word. There arel intermediate
statesG1 to Gl, where the only observation associated with
stateGi is the graphemegi. There is a transition fromS0

to G1. From eachGi there is a transtion toGi+1 and from
Gl there is a transtion toSl+1. The HMM so defined has a
probability of 1 for the obsrevation sequence$g1g2 . . . gl$,
i.e. the word, and 0 for all other sequences. We describe
below how this basic HMM is modified to capture the word
model of TL. The process has been graphically illustrated in
Fig. 1 for the word “today”.

4.1 Graphemic path

We define each stateGi as agraphemic stateand the path
from S0 to Sl+1 through the sequence of graphemic states

2The phonemes are represented here between two ‘/’ following
the convention used in the CMU Pronouncing Dictionary available
from http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

as thegraphemic path. As we observe that the most com-
mon compression technique employed is deletion of charac-
ters, we allow the null observation,ε, for each graphemic
state. In order to take care of tying errors, we also allow each
graphemic states to emit all other characters including num-
bers and punctuation marks, which we collectively represent
by the wildcard symbol ‘@’. Fig. 1(a) shows the graphemic
path for the word “today”. We denote the different observa-
tion probabilities associated with the graphemic stateGi by
Gi(gi), Gi(ε) andGi(@).

4.2 Phonemic path

We definek phonemic statesP1 to Pk, corresponding to the
phonemesp1 to pk in the pronunciatioñw of w. As shown in
Fig. 1(b), the phonemic states are linked from left to right,
which forms thephonemic path. Each phonemic statePi

Figure 1: Construction of the word HMM illustrated for the
word “today”. The shaded nodesS0 and S6 represent the
start and the end states respectively. (a) graphemic path, (b)
phonemic path, (c) crosslinkages, (d) after state minimiza-
tion, (e) after inclusion of theextended stateEXT. For clarity
of presentation, the emissions have been ommitted for c, d
and e.
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emits a set of characters that might be used for represent-
ing the phonemepi. For example, the phoneme /AH/ may
be represented by ‘u’ (as in “gud” for “good”) or ‘o’ (as in
“today”). The purpose of the phonemic path is to capture the
phonetic substitutions used in TL. Although the path through
Pis can capture the substitution of a single phoneme by a sin-
gle character, it cannot capture the substitution of a syllable
or string of phonemes by a single letter (as in “2day” for “to-
day”, where ‘2’ stands for the phonemic string ‘/T/ /AH/’).
Therefore, we introduce the concept ofsyllabic statesrepre-
sented byS1, S2 etc. Each syllabic stateSi is a bypass be-
tween two phonemic statesPi−1 andPj+1 (i > j), such that
the observationsi associated withSi is a shorter substitution
for the phonemic stringpipi+1 . . . pj . We introduce syllabic
states for all possible substrings ofw̃ that have length greater
than 1 and can be substituted by a single character.

Note that a syllabic state emits only one character and
therefore, the observation probability associated with that
character is always one. Also note that we do not allow null
or wildcard emissions for the phonemic and syllabic states,
because any deletion or typo in the phonemic path can be
equivalently modeled by a deletion or typo in the graphemic
path.

4.3 Crosslinkages and state minimization

While typing a word, people often switch between the
graphemic and phonemic domains. For example, in
“transl8in” for “translating”, “transl” and “in” are in the
“graphemic” domain, whereas the “8” represents a pho-
netic substitution. To capture this pheonomenon, we intro-
duce crosslinkages between the graphemic and the phonemic
paths. A transition is added from every graphemic stateGi

to a statePj , if and only if in w the graphemegi+1 is the
surface realization of the phonemepj . Similar transitions are
introduced from the graphemic states to syllabic states, and
phonemic and syllabic states to graphemic states. Fig. 1(c)
shows the HMM for “today” after addition of the crosslink-
ages.

At this stage we observe that the HMM so constructed have
some redundant phonemic states, which emit only a single
character that is identical to the primary character emitted by
the corresponding graphemic state. For example,P1 in the
HMM of “today” emits only the letter ‘T’, which is also the
primary observation for the graphemic stateG1. Therefore,
P1 can be merged withG1 without affecting the compression
model. We minimize the HMM by identifying and merging
such redundant phonemic states and appropriately redefining
the transition edges. The minimized HMM for “today” is
shown in Fig. 1(d).

4.4 Extended state

Initial experimentation showed that the word model described
by the aforementioned HMM had a poor performance be-
cause, the HMM failed to recognize the correct word when
a word final ‘e’ or ‘s’ was appended, as in “rite” for “right”
and “anyways” for “anyway”. This however is a common
feature of TL. In order to capture both this, we introduce an
extra stateEXT betweenGl andSl+1, which emits ‘e’ and

‘s’. However, the transition betweenGl andSl+1 is also pre-
served as the extra character need not be appended always.
Fig. 1(e) shows the HMM after addition of the extra state.

4.5 Construction of word HMM
Given a wordw, the structure of the HMM forw is con-
structed as follows. The graphemic path is constructed
first. The pronunciatioñw for w is searched from a pro-
nouncing dictionary3, using which the phonemic path is con-
structed. The emission set for each phoneme is obtained
from a phoneme-to-character mapping file that has been con-
structed manually. Similarly, a list of mapping from char-
acters to possible phoneme strings that the character might
substitute for, has been prepared manually. This list is used
to identify the possible syllabic states. Crosslinking is done
through the alignment ofw with w̃, from which the appro-
priate linking sites are identified. This is followed by state
minimization and introduction of the extra state.

5 Learning
The structure of the HMM for a word described so far defines
the possibilities, in the sense that the transitions and observa-
tions that are present have a probability greater than 0 and the
ones not present in the model have probability equal to 0. In
order to specify the HMM completely, we need to define the
associated model parametersλ ≡ (A,B, π), whereA is the
state transition probabilities,B is the observation probabili-
ties andπ is the initial state distribution. By definition, the
initial state distribution is given by

π(X) =

{ 1, if X = S0

0, otherwise
(3)

The parametersA andB are learnt from the training data. The
learning proceeds in three steps: (1) estimation of the model
parameters for the 234 words present in the training data, (2)
generalization of the probability values from the learnt mod-
els, and (3) computation of the HMM parameters for the un-
seen and infrequent words from the generalized model pa-
rameters.

5.1 Supervised estimation
We construct the HMMs for the wordsw1 to w234 present
in the training set. For each wordwj , we define an initial
modelλ0

j as follows. The initial state distributionπ0
j is de-

fined according to Eq. 3. The emission probabilities for each
graphemic stateGi are defined asGi(gi) = 0.7, Gi(ε) =
0.2, Gi(@) = 0.1. The emission probabilities of phonemic,
syllabic and extended states are assigned a uniform distri-
bution. The transition probabilities for the edges from the
start state is defined uniformly. For the graphemic states, the
transition to the next graphemic state is assigned twice the
probability of the transition to a phonemic or syllabic state.
Similarly, for a phonemic state, the transition probability to
another phonemic state is set at a higher value than to other
states. Note that by construction there can be at most three
transitions from a state.

3We use the CMU Pronouncing Dictionary
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Givenλ0
j , we find out the most likely sequences of states

through the HMM for each observation (i.e. variation in the
training set)vj

i for wj using the Viterbi algorithm[Rabiner,
1989]. We keep a count with every transition and emission
in the HMM, which is increased byf j

i (the frequency of the
variantvj

i ) if and only if the particular transition or emission
is used in the Viterbi path ofvj

i . Once the process is com-
pleted for all the variations ofwj , we reestimate the model
parameters of the HMM based on the final counts associated
with each transition and emission.Add-α smoothing[Juraf-
sky and Martin, 2000] is used to handle 0 counts. We shall
denote this reestimated model forwj by λ∗j . Thus, at the end
of the supervised estimation, we have 234 HMM modelsλ∗1
to λ∗234.

5.2 Generalization
Due to paucity of training data it is not possible to learn the
HMM parameters for every word of the standard language.
Therefore, we extrapolate from the HMM modelsλ∗i learnt
from the training set to generate the model parameters of un-
seen and infrequent words through generalization of the prob-
ability values. The motivation behind the choice of the gen-
eralization parameters comes from the observations such as
the probability of deletion of a character depends on the po-
sition of the character in the word (e.g. deletion probability
is higher towards the end of the word), the length of the word
(longer words feature more deletion), whether the character
is a vowel or consonant (vowels are deletd more frequently)
and so on. The following parameters are estimated during
generalization.
• The null and wildcard emission probabilities for the

graphemic states are learnt as a function of (1) the position
of the state from the start state, (2) whether the grapheme as-
sociated with the state is a vowel or consonant, and (3) the
length of the word.
• The emission probabilities of the phonemic states depend

only on the particular phonemeρ represented by the state and
the observed characterp. Thus, the values forPr(p|ρ) are
obtained by averaging over all phonemic states representing
ρ.
• The ratios of the transition probabilities from a

graphemic state to another graphemic state and a graphemic
state to any other state (phonemic or syllabic) is learnt
depending on whether the grapheme represented by the
graphemic state is a vowel or a consonant. Similar ratios are
learnt for the phonemic states and the syllabic states.
• The ratios of transition probabilities from the start state

to the graphemic and phonemic states are also estimated irre-
spective of other factors.

We refrain from any further discussions on the findings
of the generalization step owing to space limitations, even
though they reveal several interesting facts about the struc-
ture of the TL.

5.3 Model for unseen words
Given a wordw, if w is frequently observed in the training
data, that is ifw belongs to the set of 234 words that has been
used for training the initial models, then we adopt the learnt

Figure 2: Evaluation results for the word model. 1 and 2
stand for the experiments with and without the undistorted
data, whereas a and b stand for the model without and with
the extended state.

modelλ∗k for w (wherek is the index ofw in the training
set) without any change. However, ifw is an infrequent or
unseen word, we construct the HMM forw as described in
Sec. 4.5 and compute the model parameters from the gener-
alized probabilities and their ratios learnt from the training
data.

6 Evaluation
We evaluate the word model on 1228 distinct tokens obtained
from the SMS corpus that are not present in the training set.
Since the test tokens are chosen from the word-aligned par-
allel corpus, we also know the actual translation(s) for every
word. Also note that as there can be multiple translations for
a given token (for example “bin” might come from “been” or
“being”), we assume the output of the decoder to be correct
if it matches any of the observed translations in the empirical
data.

The evaluation procedure is as follows. For each tokent
in the test set, we compute the probabilitiesPr(t|wi) for ev-
ery wordwi in the lexicon. We use a lexicon of 12000 most
frequent English words. The probabilities are computed us-
ing the Viterbi algorithm, which has been modified to handle
the null emissions efficiently. We sort the wordswi in de-
scending order of the probabilities, and thus obtain a ranked
list of suggestions. The higher the probability, the smaller the
rank. The results are summarized in Fig. 2. The x-axis plots
the rank of a suggested translation; in the y-axis we plot the
word level accuracyA(r), which is defined as the percentage
of words in the test set where the correct translation is within
the topr suggestions by the system.

We report the results for two different HMM models: a)
when the extended state is not present, and b) when it is
present. Initially, we observe very little differences between
the performance of the two models. The accuracy for both
the models start at 89% forr = 1 and reaches upto 97% for
r = 20 (the curves 1a and 1b in Fig. 2). However, on in-

6868



TL token (SL token) Decoder output (−log(P (s|t)) Rank
2day (today) today (3.02), stay (11.46), away (13.13), play (13.14), clay (13.14) 1
fne (phone) fine (3.52), phone (5.13), funny (6.26), fined (6.51), fines (6.72) 2
thx (thanks) the (6.67), tax (6.89), thanks (7.53), tucks (8.36), takes (8.36) 3
m8 (mate) my (6.80), ms (6.86), mr (6.86), mate (8.06), me (8.94) 4

ant (cannot) ant (0.20), aunt (3.57), ants (3.61), cannot (6.06), cant (6.55) 5
dem (them) deem (3.52), deems (6.61), dec (6.74), dream (7.06), drum (7.15) 10

orite (alright) write (7.02), omit (9.79), writes (10.22), writer (10.22), writers (10.69)95
cuz (because) crews (6.19), cut (6.74), cup (6.74), occurs (6.82), acres (6.82) −
cin (seeing) coin (3.52), chin (3.79), clean (5.95), coins (6.61), china (6.75) −

Table 2: Suggestions generated by the decoder for some TL tokens.− in the last column means the correct suggestion did not
feature in top 100 suggestions of the decoder.

spection it was found that more than 74% of the tokens in
the test set were devoid of any distortion. In order to design a
stricter evaluation strategy, we removed all the undistorted to-
kens from the test data, and conducted the same experiments
over the remaining 319 tokens. We observe that the accuracy
of the model without the extended state (depicted as 2a in
Fig. 2) rises from 59% (r = 1) to 84% (r = 20), whereas
the accuracy with the extended state (depicted as 2b in Fig. 2)
rises from 58% (r = 1) to 86% (r = 20). Thus, the inclu-
sion of the extended state in the HMM boosts up the overall
performance by around 2% for unseen and distorted inputs.

Even though the improvement in accuracy due to the ex-
tended state is quite small, this modification cannot be ne-
glected altogether. This is because by construction, the word
HMM for a word of lengthn returns a probability of 0 for any
word whose length is greater thann. In the SMS data, we ob-
serve cases where an extra ‘s’ or ‘z’ is appended to the words.
In some cases this leads to an increase in the length of the to-
ken in TL than its SL counterpart. Some examples of extra
‘s’ or ’z’ observed in the data are: “bdays” for “birthday”,
“datz” for “that”, “anyways” for “anyway”. Extra ‘e’ is usu-
ally appended for phonological reasons, for example “nite”
for “night”, “grate” for “great”, etc. Although the state exten-
sion is not absolutely necessary for handling such cases, we
find that the modification helps in improving the rank of the
suggestions in the aforementioned cases.

Table 2 shows some tokens of TL, there gold standard
translations in SL and the first five suggestions of the decoder
with the extended state. The negative logarithm of the con-
ditional probabilities of the suggestions for the TL token are
given in parenthesis for comparision, along with the rank of
the correct suggestion.

7 Conclusion
In this paper we described an HMM-based conversion model
between TL and the standard language. The model has been
used to construct a decoder from English SMS texts to their
standard English forms with an accuracy of 89% at the word
level. The decoder can be used for automatic correction as
well as information extraction and retrieval from noisy En-
glish documents such as emails, blogs, wikis and chatlogs
that are written in TL.

The novelty of the current work resides in the construction

of the word HMMs reflecting the compression techniques
used by human users and learning of the associated model
parameters from extremely sparse data. Nevertheless, the
structure of the current HMM can be improved in several
ways, such as (1) addition of self-loops to graphemic states
to capture emphasis as in “soooo” for “so” and (2) model-
ing of transposition errors as in “aks” for “ask”. The decoder
can be improved by incorporating language model and mod-
ules to handle abbreviations, deletion and fusion of words,
etc. Similarly, a syllable and word level analogical learning
technique, where the HMM parameters of an unseen word
say “greatest” can be learnt from the HMMs of the known
words having similar phonetic or graphemic structure, like
“late” and “test”, can significantly boost up the performance
of the parameter estimation module.
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