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While communicating over texting media, such as chats
emails and short messages over mobile phones (SMS), us
have a tendency to use a non-standard form of the langu
that disregards grammar, punctuation and spelling rules. |
order to type faster, especially while using a small keyboar

like that of the mobile phones, users employ a large number o
compression techniques to reduce the message length. COWI-
monly used abbreviations, shorter phonetic substitution
deletion of words and characters, are some of the populal
methods for shortening the message length. Nevertheless, iR
characters and words cannot be deleted arbitrarily, as it ma

seriously hamper the understandability of the message. Thu
two opposing forces - shorter messages and semantic una
biguity - shape the structure of this compressed non-standa
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Abstract

Language usage over computer mediated dis-
courses, like chats, emails and SMS texts, signif-
icantly differs from the standard form of the lan-
guage. An urge towards shorter message length
facilitating faster typing and the need for seman-
tic clarity, shape the structure of this non-standard
form known as thedexting language In this work

we formally investigate the nature and type of com-
pressions used in SMS texts, and based on the find-
ings develop a word level model for the texting lan-
guage. For every word in the standard language, we
construct a Hidden Markov Model that succinctly
represent all possible variations of that word in the
texting language along with their associated obser-
vation probabilities. The structure of the HMM is
novel and arrived at through linguistic analysis of
the SMS data. The model parameters have been
estimated from a word-aligned SMS and standard
English parallel corpus, through machine learning
techniques. Preliminary evaluation shows that the
word-model can be used for decoding texting lan-
guage words to their standard counterparts with
more than 80% accuracy.

Introduction

S

form, called theNetSpeakCrystal, 2001 or thetexting lan-
guage(http://en.wikipedia.org/wiki/Textinganguagé.

The objective of the current work is to study as well as for-
mally model the characteristics of the texting language (TL),
and based on the compression model so obtained, construct
a decoder from a TL word to its standard form. Ideally, we
would like to construct a sentence level decoder for TL, such
that given an input sentence in the TL, the decoder should
be able to generate the corresponding standard form. This is
illustrated through the following example.

Input: btw wenz ur flt 2moro

Output: By the way, when is your flight tomorrow?
However, the scope of the current work is limited to word
level analysis and modeling, which forms the first step
towards a sentence level decoder.

We model the problem asreisy channeprocess; we as-
sume that the standard word is compressed or distorted to the
TL form, while being transmitted over the hypothetical noisy
channel. Hidden Markov Models (HMM)Rabiner, 198p
have been used to characterize the stochastic properties of
the noisy channel. In order to learn the characteristics of
the noisy channel (or equivalently the TL), we gathered 1000
English SMS texts fronmttp://www.treasuremytext.corfihe
website hosts a large number of SMS texts in several lan-
guages uploaded by anonymous donors. The SMS texts were
manually translated to their standard English form and au-
tomatically aligned at the word level using a heuristic algo-
rithm. The resulting 20000 word parallel-corpus has been
inspected to formulate the structure of the word level HMM.

ef%e HMM parameters are estimated from the training cor-

s using machine learning techniques. Even though only
nglish SMS texts have been used here as the primary TL
ata, it is representative of the TL used over other computer
mediated discourses as wglrystal, 2001; Herring, 2041
oreover, the proposed model makes no language specific
é}ssumptions and therefore, can be suitably trained for the TL
éother languages.

A decoder from TL to the standard language has several
ractical applications including search engines and automatic

rg](grrection tools for noisy text documents such as blogs, chat-
ll gs, emails, ASR transcripted data, and call center data.

on-standard spellings and grammatical usage is very com-

*The work has been partially supported by Media Lab Asia re-mon over the web. Therefore, a search engine for noisy texts
search funding.

(say blogs, chatlogs or emails) must be immune to the several
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TL variants of a word. For example, given a query “transla-relation.

tor”, a search engine is expected to also return the webpages .
with words like “transl8or”, “trnslI8r”, “trnsltr”, etc. This can _

be readily achieved through a word level decoder from the 8(1) = argmaz []] Prtils:)] Pr(s) (2)
TL to standard language. Similarly, owing to a large number
of spelling variations, search for proper nouns also calls foiThus, the decoding modél for a TL sentence can be ab-
appropriate normalization. For instance, we find several varistracted out into two distinct levels: (1) theord model
ations for the name “Saurav Ganguly” in the web (“SaurabhPr(t;|s;) and (2) thelanguage model Pr(S). This is
Ganguly”, “Sourav Ganguli”, “Sourabh Ganguly”, etc.). As a very common technique used in several NLP systems
we shall see shortly, the proposed model for TL can also efsuch as speech recognitifdelinek, 199¥, machine transla-
ficiently capture the variations in proper nouns. Yet anothetion [Brownet al, 1993 and spell checkinfKernighanet al,,
application of this technique could be in text-to-speech sys199d. Since language model is the common part of all such
tems that read out webpages, emails and blogs to the visualNLP systems and well studied in the literature, we shall not
challenged. elaborate on it; rather the objective of this work is to develop

The structure of the TL and its socio-cultural effects havean appropriate word model for TL. o
been a subject matter of diachronic and socio-linguistic stud- At this point, it might be worthwhile to inspect the validity
ies for the past two decades (sk@rystal, 2001; Herring, Of the aforementioned assumption made regarding word-to-
2001 and references therein). Researchers have studigtiord transmission. Although it is quite reasonable to assume
the social communication patterdrinter and Eldridge, —thatfor TL the compression applied on a word is independent
2001 as well as the linguistic structuréBlishimura, 2003; Of its context, a significant drawback of the assumption lies
Palfreyman and al Khalil, 200%ised in TL. However, we do in the fact that often words are deleted or combined during
not know of any work on decoding of TL to the standard form, typing. For instance in the input-output pair of sentences cited
except for a very recent work on chat text normalizafigia  in the example in section 1, if we assume that a word for word
et al, 2004. On the other hand, the compression model detranslation has taken place, then the corresponding alignment
scribed here can provide deeper insights into the phenomend# (€ represents the null symbol i.e. the deletion of a token)

S i=1

of language change over the texting medium, that is of signif- g T
icant interest to researchers in diachronic linguistics. 1 By b
The rest of the paper is organized as follows. Section 2 2 the t
presents a noisy channel formulation of the problem; section 3 way w
3 describes the creation of training data and enumerates some 4 , €
of the observations made on the data. On the basis of the ob- 5 when wen
servations, in section 4 we describe the structure of the HMM 6 is z
for the words of the standard language. Section 5 discusses 7 your ur
the learning algorithm for estimation and generalization of 8 flight flt
the HMM parameters. The evaluation results of the model 9 tomorrow | 2moro
is presented in Section 6. Section 7 concludes the paper by 10 ? €

summarizing the contributions and listing out possible im'However, in this casd&” will not reflect the tokenization
provement schemes. shown in the above alignment, since the delimitehie
spac@ is missing between the tokens 1 and 2, 2 and 3, and
5 and 6. To solve this issue, a more general formalism like
the IBM Models[Brown et al,, 1993 could have been used,
where phrases can be aligned to phrases. However, that would
r;be an overkill, because manual inspection of the TL data re-
Yeals that intentional deletion of space takes place only under
two specific situations: (1) for commonly used abbreviations
and (2) for certain grammatical categories like the auxiliaries
(“when is” to “wenz” or “how are” to “howz") and negative
marker (“are not” to “aint” or “would not” to “wudnt”).

2 Noisy Channel Formulation

Let S = s1 so ...s; be a sentence in the standard form
wheres; represents the tokens including words, punctuatio
and abbreviations. Whefi is transmitted through the noisy
channel, it is converted t&' = t; t» ...t;, whereT is the
corresponding sentence in TL angdis the transmitted form
for the tokens;. The noisy channel is characterized by the
conditional probabilityPr(T'|.S). In order to decod#&" to the
corresponding standard fora{T"), where is the decoder . .
model, we need to determirier(S|T), which can be speci- 3 Creation of Training Data
fied in terms of the noisy channel model as follows. The formulation of the compression characterisfttg|s),
wheret is a token of the texting language and word in the
standard form, demands the information about the variations
(T) = argmaz Pr(T|S)Pr(S) (1)  of aword over the texting medium and their probabilities. In
S order to gather realistic TL data we created a 20000 word
aligned corpus of SMS texts and standard English. In this
Under the assumption that the compressed forof s; de-  section we report the process of acquiring this data and some
pends only orx;, but not the context, we obtain the following observations made on it.
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3.1 Data Collection tomoz (25) tomora (4) | 2moro (9) | tom (2)

tomorow (3) | tmorro (1) | tomrw (5) | 2mro (2)
tomoro (12) morrow (1) | tomo (3) | tomm (1)
tomorrow (24) | tomra (2) | tomor (2) | moro (1)

There are a few websites that host a good amount of medium
specific TL data. We chose to work with SMS data, because
apparantly it features the maximum amount of compression

and thus, is the most challenging one to model. The r€asOfble 1: The variations of the word “tomorrow” and their
for this extreme brevity is presumably an effect of the small : ) X
number of keys (9 to be precise) used for typing the messag%ccurrence frequencies observed in the SMS corpus

over cell phones, which necessitates multiple key presses for

entering a single character (eg. 4 key presses are required td3. Eacht; is compared withs;; and other tokens around

type in the characters ‘s’ or ‘z"). sy, where the value of is computed on the basis af
The websitehttp://www.treasuremytext.cofrosts a huge landk. If t; = s; for some; within the local window

number of SMS texts in a large number of languages, which  aroundi’, s; is declared as the translationfgfand this

have been donated by anonymous users. The messages are alignment gives rise to a new pivot. In case an exact

not indexed by languages and many of them are written using ~ match is not found, the alignment tfis defered.

more than one language. A.Iarge numper of messages havey Suppose there ape+ 2 pivots including the two hypo-
been downloaded from the site, from which around 1000 En-  thetical boundary pivots. These pivots segniEmind S

glish SMS texts are collected such that into p -+ 1 non-overlapping regions, where the tokens in
a. The texts are written only in English, and contain no @ particular region of" align to the tokens in the corre-
word written in any other language. sponding region of.

b. There is at least one misspelling in the message. This - faregion has 0 or 1 token in either 6for S, they are
criterion is important because often messages are typed ~ Uivially aligned.
using the T9 modeand therefore, does not reflect the 6. If both the regions have more than one token, the char-

TL pattern. In other words, it would be misleading to acter level similarity between all paifs;, s;) of tokens
consider the texts entered using T9 mode as instances of  within the region are computed using the Soundex algo-
TL. rithm [Odell and Russell, 1918

The SMS texts have been manually translated to their stan- 7. The best matches are aligned and declared as new pivots,
dard English form. The proper nouns (names of people, and the process continues recursively, until all the tokens
places etc.) have not been translated, but replaced by a tag are aligned.
< NAME > in both the TL and standard data. There are The accuracy of the alignment algorithm is around 80%.
around 20000 tokens (words) in the translated standard text

out of which around 2000 are distinct. 3.3 Extraction of Word-Variant Pairs
. From the aligned corpus, a list of the unique English words
3.2 Alignment and their corresponding variations in the SMS texts were ex-

The translated corpus has been automatically aligned atacted along with the occurrence frequencies. The list was
the word level using a heuristic algorithm. The algorithm manually cleaned to remove noise introduced due to error in
searches for sites (tokens) in the original and translated textglignment. Out of the 2000 distinct English words, only 234
which can be aligned to each other witlgh confidenceWe  occur at least 10 times in the corpus, and thus, can provide
define these sites @ssots The unaligned words between two useful information about the nature of the TL; the other words
consecutive pivots are then recursively aligned by searchinfeing quite infrequent cannot be used for statistical learning
for more pivots between them; though during each recursiv@urpose. The total number of variants corresonding to these
call the conditions of alignment are further relaxed. A sketch234 frequent words is 702. This extracted list of 234 words
of the algorithm is provided below. {wi, we ,{< ..’LU234§},<a.nd t?eir ?orrespo??inghvariation ((:jharac-
) _ teristics { (vi, f1), (v3, f3) - .. (v, frn,) 1 Wherev} and f}
= :Enr? ulti:ShSt(l;/IX%tixtT =tit2 'Whg’?’e;raalr;ﬂat(ﬁjigﬂgg;d denote thejth variation and its frequency for the wor re-
q glIs 5152 - Sl @ Allts; spectively, constitutes our word level training corpus. Table 1
elimited by white spaces.

shows the variation characteristics of the word “tomorrow”.
2. We introduce two hypothetical start symbgjsands, at )
the beginning of” andS, and two similar symbols.,;,  3-4 Observations
ands.,q to mark the end of the sequences respectivelyOn an average there are 83 characters in the SMS text for
to is aligned tosg andtc,q t0 s.,q, Which forms the two  every 100 characters in the corresponding standard English
hypotheticalpivotsat the beginning and the end of the text. We also observe the following common techniques for
texts. compression of the words.

1T9 stands forText on 9 Keyswhich is a predictive texting » Deletion of characters: The commonly observed pat-

method for mobile phones. The technology allows words to be en- terns"include_deletion of vowels (as in “msg” Ior “mes-”
tered by a single key press for each letter, as opposed to the standard  Sage”), deletion of repeteq Cha"a(}ter (as in “tomorow
method, in which selecting one letter often requires multiple key ~ for “tomorrow”) and truncation (as in “tom” for “tomor-
presses. row”).
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Phonetic substitution: Examples are “2” for “to” or as thegraphemic path As we observe that the most com-
“too”, “lyk” for “like”, “rite” for “right” etc. mon compression technique employed is deletion of charac-
ters, we allow the null observation, for each graphemic
state. In order to take care of tying errors, we also allow each
graphemic states to emit all other characters including num-
e Dialectal and informal usage: Often multiple words bers and punctuation marks, which we collectively represent
are combined into a single token following certain di- by the wildcard symbol ‘@’. Fig. 1(a) shows the graphemic
alectal conventions. For example, “gonna” is used forpath for the word “today”. We denote the different observa-

“going to”, “aint” is used for “are not”, etc. tion probabilities associated with the graphemic st@tedoy
andG,;(@).

e Abbreviation: Some frequently used abbreviations are
“th” for “text back”, “lol” for “laughs out loud” etc.

e Deletion of words: Function words (e.g. articles) and Gi(9:), Gile)
pronouns are commonly deleted. “l am reading the4 > Ph . th
book” for example may be typed as “readin bk”. : onemic pa

It is interesting to note that often more than one of these//e definek phonemic states’ to £, corresponding to the
honeme®; to p; in the pronunciationo of w. As shown in

compression techniques are used over a single word tQ. - . .
achieve maximal reduction in length. The token “2mro” for F19- 1(0), the phonemic states are linked from left to right,
example is obtained from “tomorrow” through phonetic sub-"Which forms thephonemic path Each phonemic staté;
stitution as well as character deletion.

£ Pos 0@ D@ s A@ £ Y@

4 Word Model V7 Al VI
The purpose of the word model is to capture the intentiona ©
T AcC D

compressions applied by the user to shorten the length ¢
the word as well as the unintentional errors made during ty
ing. There are several works related datomatic speech
recognitionin general (sedJelinek, 199¥ and references
therein) andyrapheme to phoneme convers|daylor, 2005

in particular that utilize HMM to model the variations in pro-
nunciation and spellings. Inspired by such works, here we
model each wordv in the standard language as an HMM.
Let w = g192...9;, Whereg; represents a character or
graphemeof the standard language. L&t = pips...px

be the pronunciation af, wherep; represents phonemeof

the standard languageFor example, ifw = ‘today’, then
w="/T/|AH] D] |AY/".

Suppose the wordy = g19s ... ¢g; is typed without any

compression or error. This situation can be modeled usin
a left-to-right HMM [Rabiner, 198Phaving! + 2 states as
follows. There is astart stateand anend statedenoted by
Sp and S;;; respectively. The only observation associated
with these two states is the special symbol $, which mark:
the beginning and the end of a word. Therelareermediate
states(¢; to G;, where the only observation associated with
stateG; is the grapheme;. There is a transition front,
to G;. From each’; there is a transtion t6/;; and from
G, there is a transtion t6;, ;. The HMM so defined has a
probability of 1 for the obsrevation sequente g- . . . g3,
i.e. the word, and 0O for all other sequences. We describ
below how this basic HMM is modified to capture the word
model of TL. The process has been graphically illustrated ir
Fig. 1 for the word “today”.

=
=g

Ao0un YE I
N

4.1 Graphemic path Figure 1: Construction of the word HMM illustrated for the

We define each staté; as agraphemic statend the path word “today”. The shaded node% and Ss represent the
from S, to S;,; through the sequence of graphemic statesstart and the end states respectively. (a) graphemic path, (b)
phonemic path, (c) crosslinkages, (d) after state minimiza-
2The phonemes are represented here between two /' followindion, (€) after inclusion of thextended statBXT. For clarity
the convention used in the CMU Pronouncing Dictionary availableof presentation, the emissions have been ommitted for c, d
from http://www.speech.cs.cmu.edu/cgi-bin/cmudict and e.
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emits a set of characters that might be used for represents’. However, the transition betwee#;, and.S;; is also pre-

ing the phoneme;. For example, the phoneme /AH/ may served as the extra character need not be appended always.

be represented by ‘u’ (as in “gud” for “good”) or ‘0’ (as in Fig. 1(e) shows the HMM after addition of the extra state.

“today”). The purpose of the phonemic path is to capture the .

phonetic substitutions used in TL. Although the path through#-5  Construction of word HMM

P;s can capture the substitution of a single phoneme by a sirGiven a wordw, the structure of the HMM fomw is con-

gle character, it cannot capture the substitution of a syllablstructed as follows. The graphemic path is constructed

or string of phonemes by a single letter (as in “2day” for “to- first. The pronunciationy for w is searched from a pro-

day”, where ‘2’ stands for the phonemic string ‘/T/ /AH/"). nouncing dictionar§, using which the phonemic path is con-

Therefore, we introduce the conceptsyllabic statesepre-  structed. The emission set for each phoneme is obtained

sented byS;, S, etc. Each syllabic stat§; is a bypass be- from a phoneme-to-character mapping file that has been con-

tween two phonemic statdg_; andP;; (¢ > j), such that structed manually. Similarly, a list of mapping from char-

the observation; associated wittd; is a shorter substitution acters to possible phoneme strings that the character might

for the phonemic string;p;11 ... p;. We introduce syllabic  substitute for, has been prepared manually. This list is used

states for all possible substringsfthat have length greater to identify the possible syllabic states. Crosslinking is done

than 1 and can be substituted by a single character. through the alignment ofv with w, from which the appro-
Note that a syllabic state emits only one character angbriate linking sites are identified. This is followed by state

therefore, the observation probability associated with thatninimization and introduction of the extra state.

character is always one. Also note that we do not allow null

or wildcard emissions for the phonemic and syllabic states5 Learning

bec_ausle 3“3/ dzlelti%nbor %p? itfﬁ the ?hon?”liﬁ path ﬁan D& structure of the HMM for a word described so far defines
equivalently modeied by a deletion or typo In the grapnemigy, possibilities, in the sense that the transitions and observa-

path. tions that are present have a probability greater than 0 and the
. C ones not present in the model have probability equal to 0. In
4.3  Crosslinkages and state minimization order to specify the HMM completely, we need to define the
While typing a word, people often switch between theassociated model parameters= (A, B, ), whereA is the
graphemic and phonemic domains. For example, irstate transition probabilitied; is the observation probabili-
“transI8in” for “translating”, “transl” and “in” are in the ties andr is the initial state distribution. By definition, the
“graphemic” domain, whereas the “8" represents a phodnitial state distribution is given by
netic substitution. To capture this pheonomenon, we intro- LifX=5
; ; ; ) =0

duce crosslinkages between the graphemic and the phonemic 7(X) = { 3)
paths. A transition is added from every graphemic s@te
to a stateP;, if and only if in w the graphemey;, is the
surface realization of the phonemg Similar transitions are  The parameterd andB are learnt from the training data. The
introduced from the graphemic states to syllabic states, angarning proceeds in three steps: (1) estimation of the model
phonemic and syllabic states to graphemic states. Fig. 1(@arameters for the 234 words present in the training data, (2)
shows the HMM for “today” after addition of the crosslink- generalization of the probability values from the learnt mod-
ages. els, and (3) computation of the HMM parameters for the un-

At this stage we observe that the HMM so constructed havéeen and infrequent words from the generalized model pa-
some redundant phonemic states, which emit only a singleameters.
character that is identical to the primary character emitted b)é . . .
the corresponding graphemic state. For examplein the -1 Supervised estimation
HMM of “today” emits only the letter ‘T’, which is also the We construct the HMMs for the words; to wa34 present
primary observation for the graphemic state. Therefore, in the training set. For each word;, we define an initial
P, can be merged withy; without affecting the compression model \? as follows. The initial state distribution? is de-
model. We minimize the HMM by identifying and merging fined according to Eq. 3. The emission probabilities for each
such redundant phonemic states and appropriately redefinirggaphemic staté€r; are defined a&+;(g;) = 0.7, G;(e) =
the transition edges. The minimized HMM for “today” is 0.2, G;(@) = 0.1. The emission probabilities of phonemic,

0, otherwise

shown in Fig. 1(d). syllabic and extended states are assigned a uniform distri-
bution. The transition probabilities for the edges from the
4.4 Extended state start state is defined uniformly. For the graphemic states, the

Initial experimentation showed that the word model describeé)ranSItIon o the next graphemic state is assigned twice the

b the sforemertioned HMM had a poor performance bellE0S0IY o S tansion o 3 pronentc o gt st
cause, t_he HMM ff"",led to recognize the_ccirrecit Wofd. Wr?,enanother phonemic state is set at a higher value than to other
a word final ‘e’ or ‘s’ was appended, as in “rite” for “right

and “anyways” for “anyway”. This however is a common states. Note that by construction there can be at most three

feature of TL. In order to capture both this, we introduce antransmons from a state.
extra stateEXT betweenG; and S;;1, which emits ‘e’ and 3We use the CMU Pronouncing Dictionary
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Given )\g’, we find out the most likely sequences of states 100,00
through the HMM for each observation (i.e. variation in the 95 00 4
training set)v! for w; using the Viterbi algorithniRabiner, 9000 4
1989. We keep a count with every transition and emission . '
in the HMM, which is increased by (the frequency of the s 86007
variantv?) if and only if the particular transition or emission B B000 7
is used in the Viterbi path of!. Once the process is com- S 7500 1
pleted for all the variations ofv;, we reestimate the model S 7000 -
parameters of the HMM based on the final counts associated < —
with each transition and emissioAdd-o smoothindg Juraf- '
sky and Martin, 200Dis used to handle 0 counts. We shall B0.00 1
denote this reestimated model fo by A*. Thus, at the end 55.00
of the supervised estimation, we have 234 HMM modgls 5000 , , ,
to M35, 0 5 10 15 20

. . ¥ ].l\:
5.2 Generalization t

Due to paucity of training data it is not possible to learn the
HMM parameters for every word of the standard languagegiang for the experiments with and without the undistorted

Therefore, we extrapolate from the HMM models leamnt 45 "\whereas a and b stand for the model without and with
from the training set to generate the model parameters of Ung 4 axtended state.

seen and infrequent words through generalization of the prob-

ability values. The motivation behind the choice of the gen- ] ] ) o
eralization parameters comes from the observations such &odel\; for w (wherek is the index ofw in the training

the probability of deletion of a character depends on the poset) without any change. However,ufis an infrequent or
sition of the character in the word (e.g. deletion probabilityunseen word, we construct the HMM far as described in

is higher towards the end of the word), the length of the wordS€c. 4.5 and compute the model parameters from the gener-
(longer words feature more deletion), whether the charactelized probabilities and their ratios learnt from the training
is a vowel or consonant (vowels are deletd more frequently}jata-

and so on. The following parameters are estimated durin% )

generalization. Evaluation

e The null and wildcard emission probabilities for the e evaluate the word model on 1228 distinct tokens obtained
graphemic states are leart as a function of (1) the positiofom the SMS corpus that are not present in the training set.
of the state from the start state, (2) whether the grapheme ajnce the test tokens are chosen from the word-aligned par-
sociated with the state is a vowel or consonant, and (3) thgjie| corpus, we also know the actual translation(s) for every
length of the word. . _ word. Also note that as there can be multiple translations for

» The emission probabilities of the phonemic states depeng given token (for example “bin” might come from “been” or
only on the particular phonemerepresented by the state and «peing”), we assume the output of the decoder to be correct
the observed charactgr Thus, the values foPr(p|p) are it it matches any of the observed translations in the empirical
obtained by averaging over all phonemic states representinggts

. ) . - The evaluation procedure is as follows. For each token

L] The ratios of the transition _probabllltles from a |n the test set, we Compute the probab"'ﬂé@(ﬂwl) for ev-
graphemic state to another graphemic state and a graphemigy worduw;, in the lexicon. We use a lexicon of 12000 most
state to any other state (phonemic or syllabic) is learnfrequent English words. The probabilities are computed us-
depending on whether the grapheme represented by thgq the Viterbi algorithm, which has been modified to handle
graphemic state is a \_/owel or a consonant. _S|m|Iar ratios arghe null emissions efficiently. We sort the words in de-
learnt for the phonemic states and the syllabic states. scending order of the probabilities, and thus obtain a ranked

e The ratios of transition probabilities from the start statejist of suggestions. The higher the probability, the smaller the
to the graphemic and phonemic states are also estimated irfgank. The results are summarized in Fig. 2. The x-axis plots
spective of other factors. ] ) ~ therank of a suggested translation; in the y-axis we plot the

We refrain from any further discussions on the findingsword level accuracyl (), which is defined as the percentage
of the generalization step owing to space limitations, everpfwords in the test set where the correct translation is within
though they reveal several interesting facts about the strughe topr suggestions by the system.
ture of the TL. We report the results for two different HMM models: a)
when the extended state is not present, and b) when it is
5.3 Model for unseen words present. Initially, we observe very little differences between
Given a wordw, if w is frequently observed in the training the performance of the two models. The accuracy for both
data, that is ifw belongs to the set of 234 words that has beerthe models start at 89% for= 1 and reaches upto 97% for
used for training the initial models, then we adopt the learnt- = 20 (the curves 1a and 1b in Fig. 2). However, on in-

Figure 2: Evaluation results for the word model. 1 and 2
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| TL token (SL token)]| Decoder output-{iog(P(s[t)) | Rank |

2day (today) today (3.02), stay (11.46), away (13.13), play (13.14), clay (13.14) 1
fne (phone) fine (3.52), phone (5.13), funny (6.26), fined (6.51), fines (6.72) 2
thx (thanks) the (6.67), tax (6.89), thanks (7.53), tucks (8.36), takes (8.36)| 3
m8 (mate) my (6.80), ms (6.86), mr (6.86), mate (8.06), me (8.94) 4
ant (cannot) ant (0.20), aunt (3.57), ants (3.61), cannot (6.06), cant (6.55)| 5
dem (them) deem (3.52), deems (6.61), dec (6.74), dream (7.06), drum (7.15) 10
orite (alright) write (7.02), omit (9.79), writes (10.22), writer (10.22), writers (10.69)95
cuz (because) crews (6.19), cut (6.74), cup (6.74), occurs (6.82), acres (6.82) —
cin (seeing) coin (3.52), chin (3.79), clean (5.95), coins (6.61), china (6.75)] —

Table 2: Suggestions generated by the decoder for some TL tokeinghe last column means the correct suggestion did not
feature in top 100 suggestions of the decoder.

spection it was found that more than 74% of the tokens irof the word HMMs reflecting the compression techniques
the test set were devoid of any distortion. In order to design aised by human users and learning of the associated model
stricter evaluation strategy, we removed all the undistorted toparameters from extremely sparse data. Nevertheless, the
kens from the test data, and conducted the same experimersucture of the current HMM can be improved in several
over the remaining 319 tokens. We observe that the accuraayays, such as (1) addition of self-loops to graphemic states
of the model without the extended state (depicted as 2a ito capture emphasis as in “sooo00” for “so” and (2) model-
Fig. 2) rises from 59%( = 1) to 84% ¢ = 20), whereas ing of transposition errors as in “aks” for “ask”. The decoder
the accuracy with the extended state (depicted as 2b in Fig. Zan be improved by incorporating language model and mod-
rises from 58% = 1) to 86% ¢ = 20). Thus, the inclu- ules to handle abbreviations, deletion and fusion of words,
sion of the extended state in the HMM boosts up the overaletc. Similarly, a syllable and word level analogical learning
performance by around 2% for unseen and distorted inputs.technique, where the HMM parameters of an unseen word
Even though the improvement in accuracy due to the exsay “greatest” can be learnt from the HMMs of the known
tended state is quite small, this modification cannot be newords having similar phonetic or graphemic structure, like
glected altogether. This is because by construction, the wordate” and “test”, can significantly boost up the performance
HMM for a word of lengthn returns a probability of O for any  of the parameter estimation module.
word whose length is greater thanin the SMS data, we ob-
serve cases where an extra ‘s’ or 'z’ is appended to the wordfkeferences
In some cases this leads to an increase in the length of the tps own et al, 1993 P. F. Brown, S. A. D. Pietra, V. J. D.
ken in TL than its SL counterpart. Some examples of extra Pietra, and R. L. Mercer. The mathematics of statisti-
s’ or 'z’ observed in the data are: “bdays” for *birthday”, 3| machine translation: Parameter estimati&ompu-
ally appended for phonological reasans, for example mite’10NaI LInguistcs 19(2)263-312, 1993,
y app phonologi sons, for examp [
for "night”, “grate” for “great”, etc. Although the state exten- LCTyStal, 2001 D. Crystal.Language and the Interne€UP,
sion is not absolutely necessary for handling such cases, we Cambridge, UK, 2001.
find that the modification helps in improving the rank of the [Grinter and Eldridge, 20Q1R. Grinter and M. Eldridge. y
suggestions in the aforementioned cases. do tngrs luv 2 txt msg. IrProceedings of the Seventh
Table 2 shows some tokens of TL, there gold standard European Conference on Computer-Supported Coopera-
translations in SL and the first five suggestions of the decoder tive Work pages 219-238, Bonn, Germany, 2001. Kluwer
with the extended state. The negative logarithm of the con- Academic Publishers.

ditional probabilities of the suggestions for the TL token are[Herring, 2001 S. C. Herring. Computer-mediated dis-
given in parenthesis for comparision, along with the rank of course. In D. Tannen, D. Schiffrin, and H. Hamilton, ed-

the correct suggestion. itors, Handbook of Discourse Analysipages 612—-634,
Oxford, 2001. Blackwell.
7 Conclusion [Jelinek, 1997 F. Jelinek. Statistical Methods for Speech

. . . Recognition MIT Press, Cambridge, MA, 1997.

In this paper we described an HMM-based conversion model ] ]
between TL and the standard language. The model has be&rafsky and Martin, 20Q0D. Jurafsky and J. H. MartiAn
used to construct a decoder from English SMS texts to their [ntroduction to Natural Language Processing, Computa-
standard English forms with an accuracy of 89% at the word tional Linguistics, and Speech Recognitidirentice Hall,
level. The decoder can be used for automatic correction as
well as information extraction and retrieval from noisy En- [Kernighanet al, 1990 M. D. Kernighan, K. W. Church,
glish documents such as emails, blogs, wikis and chatlogs and W. A. Gale. A spelling correction program based on
that are written in TL. a noisy channel model. IAroceedings of COLINGages

The novelty of the current work resides in the construction 205-210, NJ, USA, 1990. ACL.
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