
A Tool for Internet Chatroom Surveillance

Ahmet Çamtepe, Mukkai S. Krishnamoorthy, and Bülent Yener ?

Department of Computer Science, RPI, Troy, NY 12180, USA.
{camtes, moorthy, yener}@cs.rpi.edu

Abstract. Internet chatrooms are common means of interaction and
communications, and they carry valuable information about formal or
ad-hoc formation of groups with diverse objectives. This work presents
a fully automated surveillance system for data collection and analysis
in Internet chatrooms. The system has two components: First, it has an
eavesdropping tool which collects statistics on individual (chatter) and
chatroom behavior. This data can be used to profile a chatroom and its
chatters. Second, it has a computational discovery algorithm based on
Singular Value Decomposition (SVD) to locate hidden communities and
communication patterns within a chatroom. The eavesdropping tool is
used for fine tuning the SVD-based discovery algorithm which can be
deployed in real-time and requires no semantic information processing.
The evaluation of the system on real data shows that (i) statistical prop-
erties of different chatrooms vary significantly, thus profiling is possible,
(ii) SVD-based algorithm has up to 70-80% accuracy to discover groups
of chatters.

1 Introduction and Background

Internet chatrooms provide for an interactive and public forum of communica-
tion for participants with diverse objectives. Two properties of chatrooms make
them particularly vulnerable for exploitation by malicious parties. First, the real
identity of participants are decoupled from their chatroom nicknames. Second,
multiple threads of communication can co-exists concurrently. Although human-
monitoring of each chatroom to determine who-is-chatting-with-whom is possible,
it is very time consuming hence not scalable. Thus, it is very easy to conceal
malicious behavior in Internet chatrooms and use them for covert communica-
tions (e.g., adversary using a teenager chatroom to plan an unlawful act). In
this work, we present a fully automated surveillance system for data collection
and analysis in Internet chatrooms. Our system can be deployed in the back-
ground of any chatroom as a silent listener for eavesdropping. The surveillance
is done in the form of statistical profiling for a particular chatter, a group of
chatters or for the entire chatroom. Furthermore, the statistical profiles are used
to devise algorithms which can process real-time data to determine chatters and
their partners. Thus, the proposed system could aid the intelligence community

? This research is supported by NSF ITR Award #0324947.

network users channels servers

QuakeNet 212005 184108 38

Undernet 144138 50720 38

IRCnet 117820 56550 44

GamesNET 45722 44521 22

BRASnet 43927 16523 34

Table 1. Top five IRC networks

to discover hidden communities and communication patterns within a chatroom
without human intervention.

IRC (Internet Relay Chat) [1–5] is the original and the most widely used
Internet chat medium. Currently there are 675 IRC networks distributed all
around the world. There are total of 5290 servers within these networks having
1219906 users on 591257 channels [6]. IRC is a multi-user, multi-channel and
multi-server chat system which runs on a Network. It is a protocol for text based
conferencing and provides people all over the world to talk to one another in real
time. Conversation or chat takes place either in private or on a public channel
called as chat room.

IRC follows a client/server model. Server can be running on many machines,
in a distributed fashion on a network, where each server has a copy of the global
state information of the entire network. IRC client communicates with an IRC
server through Internet. Client logs on to a server, picks a unique nickname and
selects one or more channels to join. A channel is a group of one or more users
who receive all messages addressed to that channel. A channel is characterized
by its name, topic, set of rules and current members. Basically, there are two
types of channels: standard channels and safe channels. Standard channels are
created implicitly when the first user joins it, and cease to exist when the last
user leaves it. Creation and deletion of the safe channels are made by the servers
upon request and that is why they are named as safe channels. In order for the
channel members to keep some control over a channel, some channel members
are privileged and called as channel operators. They can perform actions such
as setting the topic, ejecting (kicking) a user out of the channel, banning a users
or all users coming from a set of hosts, and sharing their privileges with other
users.

Server is part of a global IRC server network. When a client sends a message
to a channel, server sends this message to all other servers and each server
submits the message to people who are part of the same channel. This way, users
of a channel, who are distributed all over an IRC network, can communicate in
broadcast manner within a channel. In this work, we select Undernet because it
is one of the biggest IRC networks with its 38 servers, 50000 channels and more
than 100000 users. Table 1 lists top five IRC networks in the world [6].

1.1 Multiple Nicknames Authentication in IRC

IRC is not a secure protocol since all the messages and other information are
transmitted in clear text. Authentication is also not reliable since servers au-
thenticate clients: (i) by plain text password, and (ii) by DNS lookups of source
IP addresses which are subject to spoof. Multiple nick names further compicate
the authenticity of users while analyzing chat room data. During an IRC session
a client can change its nickname on the flight. Although such changes are visible
from change nickname messages, once clients are disconnected, they can use any
nicknames they like when they login to server again. Furthermore, a client can
access IRC from different hosts under different nicknames. In such situations, it
is impossible to decide whether given two nicknames belong to same or different
person. We note that some of the channels introduce an additional security by
sending an “ident” query to the “identd” service running on client hosts. The
Identification Protocol [5] provides a mechanism to determine the identity of a
user using a particular TCP connection. Given a TCP source and destination
port pair of a TCP socket, Identification Protocol running on client host can first
locate the process which has created the socket. Then, it can find the owner of
the process and return the user id as the response to the ident query. Identifica-
tion Protocol itself is not secure and can not be accepted as a trusted authority
for this functionality. It is possible to implement a fake identd software. Actually,
some IRC clients come with their own fake identity services with which client
can hide its identity or initiate impersonation attacks.

The multiple nicknames problem is out of the scope of this work. In our
system we simply maintain a list of nicknames that a client used in the channel.
(Note that this information is available in the messages logs as mentioned above).
For a new client, we check nickname against these nickname lists, if it is in a list
of a person, we assume that person has disconnected and connected again.

1.2 Related Work

In this work, we focus on IRC networks and build a system for data collection and
identification of hidden communication patters and groups. There are several spy
tools to listen IRC channels. PieSpy [7, 8] is an IRC program (bot) that logins
to IRC servers, joins and listens to IRC Channels. PieSpy is used to collect
messages and extract information to visualize social networks in a chatroom.
It has simple set of heuristic rules to decide who is talking to who. These rules
include direct addressing (destination nickname is written at the beginning of the
message). Direct addressing is simple and most reliable method to set relation
between users, but it can not be used always. Temporal Proximity is another
approach. If there is a long period of silence before a user sends a message
and this message is immediately followed up by a message from another user,
then it is reasonable to imply that the second message was in response to the
first. Temporal Proximity searches for such cases to infer a relationship between
the users. Temporal Density is an approach when Temporal Proximity is not
applicable. Basically, If several messages have been sent within a time period all

ID\T ime 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 0 0 1 2 0 1 0 0 0 0 0 1 0 0 2

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 1 2 0 1 0 1 0

7 0 0 0 1 0 1 0 1 0 1 0 2 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 1 0 0 3 1 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Example Data Matrix

of them are originating only from two users, then it is assumed that there is a
conversation between these two users. This idea is similar to our fixed window
approach; however, there is no verifiable performance study of PieSpy nor the
impacts of these parameters to the discovery of communication patterns.

Chat Circle [9] is an abstract graphical interface for synchronous conversation
which aims to create a richer environment for online discussions. This approach is
based on graphical visualization and does not provide eavesdropping capability.

There are several proposals for discovering hidden groups and communica-
tion patterns in social networks (see [10–12] and references therein). For ex-
ample Social Network Analysis (SNA) [10] is a software tool which considers
relationships between people, groups, organizations, computers or other infor-
mation/knowledge processing entities. The nodes in the network are the peo-
ple and groups while the links are the relationships between the nodes. SNA
is based on computing the metrics: degrees, betweenness, closeness, boundary
spanners, peripheral players, network centralization, structural equivalence and
cluster analysis. Since defining an accurate graph for IRC is a hard problem, the
results based on a graph construction may have high noise.

Organization of the paper This paper is organized as follows. In Section 2
we describe how to access and collect data in IRC. In Section 3 we explain a
computational discovery algorithm, based on the Singular Value Decomposition
(SVD), for locating groups of chatters. In Section 4 we present the experimental
results and finally conclude in Section 5.

2 Data Acquisition

In this work, we have implemented a simple IRC client which logs to a server,
selects a unique nickname and joins to a given channel. Program silently listens
to the channel (i.e., it is a silent listener) and logs all the messages.

Our IRC client continuously collects data. In this work, we used ten days of
channel logs for the statistical analysis. For our algorithm, we used two busiest

four-hour periods in a day (i.e., from 08:00 to 12:00, and from 20:00 to 24:00).
Each four hour period is divided into eight 30-minute intervals called sampling

windows (e.g., 08:00 to 08:30, 08:30 to 09:00, etc).We also used other sampling
window sizes, i.e. 15, 30, 45, 60, 75, 90-min. We further divide the sampling win-
dows into time slots of sizes 15, 30, 45, 60, 75 or 90 seconds. For each time slot,
we count number of messages of each user. We construct data matrices C where
each row corresponds to a user and each column to a time slot. Entry at cij in
the matrix is the number of messages of user i in time slot j. An example of
data matrix is shown in Table 2 assuming the time slot to be 15 sec.

The first column of each row gives an identity number of the chatter. i, j-th
entry of the matrix gives the number of messages that chatter i sent during the
jth instance (time slots). In this example, the first chatter (identity 1) is sending
two messages at the 4th time slot. Similarly the 4th row chatter (identity 7) is
sending one message at the 4th time slot. Our algorithm hypothesizes that pos-
sibly chatter 1 and chatter 7 are communicating. This hypothesis gets stronger
upon observing the message posting in the time slots 6 and 12. Thus, persistence
of co-existence of posting chat messages in the time scale indicates a correlation
among chatters. We use Singular Value Decomposition algorithm to quantify
such relations as explained later in the paper.

2.1 Generating Data Matrices

We use two methods to generate data matrices. In fixed window matrix gener-
ation method, the sampling windows do not overlap (e.g., 08:00 to 08:30, 08:30
to 09:00, etc). However, there is a chopping of the conversation at the allotted
time interval with the fixed window scheme. Thus, we consider sliding window

method in which the windows overlap as shown in Figure 1. For example, in
sliding window method for window overlap of 15 minutes, we generate matri-
ces for time intervals of 08:00-08:30, 08:15-08:45, 08:30-09:00, etc. This method
generates sixteen matrices for 4 hour period for window size of 30 minutes. In
the experiments, we investigate the impact of both sliding and fixed window
methods, as well as the size of time slots on the quality of the solutions obtained
by our algorithm.

2.2 IRC Selection and Noise Filters

We decided to listen three channels in Undernet Network. These are channels
USA, Philosophy and Political where the language is English. Each of these chan-
nels represents a different communication style and different user profiles. Chan-
nel USA is a recreation channel which contains large amounts of junk messages.
Messages are short, conversations are short-lived, and people tend to jump from
one short non-brainy conversation to another. We consider messages as noise if
they have no value in chatroom analysis. We observed the following properties of
such messages: (i) they are short broadcasts, (ii) they have sexual, offensive, an-
noying or abusive content, (iii) they are irrelevant with the topics in the channel,
and (iv) they usually do not get any response. Usually, owners of such messages

Fig. 1. The Fixed and Sliding Window Time Series

are kicked out of the channel by the channel operators. We apply some simple
set of rules to filter out the noise. These rules are based on our preliminary ob-
servations and worked fine for our case. First, we eliminate the messages of the
kicked-out-users with the assumption that they are kicked out because their mes-
sages are considered as noise. Next, we eliminate messages of the non-English
speakers. This can be achieved by using some frequent non-English (Spanish,
Italian, French, German, . . .) keywords. We also eliminate users who send mes-
sages which include words like “wanna chat”, “cares to chat”, “care to chat”,

“any girls”, “some girls”, “anyone wants”, “anyone who wants”, “anyone with

webcam”, “Chat anyone”, “Anyone want to”, “someone to talk”, “someone want

to talk”, “someone wanna talk”, “someone to chat”, “someone want to chat”,

“someone in usa”, “someone from”, “looking for someone”, “aslpls”, “asl pls”,

“asl please” Note that such word sequences mean that the chatter is looking for
some private chat, and the chatter’s intention is not to join a decent conversation
within the channel.

Stopword Elimination can be considered as a better technique to clean noise
from a chatroom data. Stopwords are a list of common or general terms that
appears frequently in a language. Analysis on word frequencies shows that there
are few words that appear often and carry really little information. Many search
engines don’t index stopwords because they’re expensive to index, i.e. there

are so many of them, and they carry little useful information. For the case of
chatroom analysis, it is possible to generate stopword lists for chatrooms based
on the topics, the communication styles, and user profiles.

Channel USA has the highest noise among the three IRCs we examined.
Channel Philosophy is a place where people discuss philosophical subjects with
low noise. Communication style here is mostly pairwise, people either select to
be part in discussion or to be silent listener and make comments rarely. Finally,
in channel Political, people discuss political issues. Communication style in this
channel is more like groupwise. Two or more users discuss a topic and users may
separate into groups according to their political tendency. Discussions occurs
among and sometimes within such groups.

3 SVD- based Algorithm for Discovering Chatter Groups

The Singular Value Decomposition has been used to reduce the dimensionality
of the data-matrix as well as finding the clusters in a given data-set [13]. In this
subsection, we describe a SVD-based algorithm to find the groups in the chat
room discussion.

The input to this algorithm is an integer Cn×m = ci,j modeling a chat room
conversations where m ≥ n. The rows are the participants and the columns
are the successive time intervals each with length ∆ seconds. An entry ci,j = k
means that the i-th participant is “talking” at the j-th time interval by posting
k messages. Thus the matrix represents conversations for a duration of m∆
seconds. Since not all the members of a chatroom are chatting all the time the
matrix C is quite sparse.

If a set of participants i1, i2, · · · , ik are chatting as a group, we expect them
to carry on their conversations over multiple δ units. Thus, there will be many
nonzero entries in the corresponding rows for many of the columns. We propose
an algorithm to identify such groups.
Algorithm:

Compute SV D

Compute the Singular Value Decomposition of C. This gives three matrices,
U, D and V , where Dn×m is a diagonal matrix and Un×n and Vm×m are
orthogonal matrices (i.e., UUT = UT U = I and V V T = V T V = I) such
that C = UDV T .

Low Rank Approximation

The diagonal entries of D (by the property of SVD) are nonnegative and
decreasing values. By considering the successive rations of the diagonal entries,
we chose the first k dimensions. The choosing the first k dimensions contribute
an error, which is= Ek =

∑n

i=1
d2

j,j −
∑k

j=1
d2

j,j . We normalize the error and
choose largest k such that Ek/En ≤ η is minimized for a given relative error
bound η.

Clustering the Low Dimension

Cluster the points d1,1u1, d2,2u2,
. . . dk,kuk (in reduced dimension) of the given

matrix. Cluster these points (in each of the dimensions) 1.

Report the Clusters

Output the participants in the clusters as groups.

4 Experimental Results

There are several objectives of the experimental study. First, a statistical quan-
tification of chatroom communications is obtained. The statistics are collected
both for the entire chatroom and for the pairwise communications as well. Sec-
ond, we measure the performance of our SVD-based clustering algorithm by
checking the accuracy of its results against to a verification tool.

4.1 Statistical Profiling of Chatrooms

We have collected data from three chatrooms over 10-days (10K to 20K mes-
sages per day) of time period to determine the message interarrival distribution
and message size distributions. In Table 3, we present the overall statistical
properties. The table shows that the USA chatroom has the most noise and the
Philosophy chatroom is the least one (based on the second moment information).
Similarly the distribution for USA chatroom is skewed most (the third moment)
and it diverges from the normal distribution the most (the fourth moment infor-
mation). These two measures indicate long tailed distributions. The table also
shows that, in average the messages and the interarrival time of the messages
are shortest in the USA and longest in Political.

In Figure 2, we show the histograms of message interarrival time and message
size information for all three chatrooms over 10-days of data. In Figure 3, we
apply curve fitting to message size distributions and discover a surprising result
that USA chatroom message size distribution follows a power law.

Pairwise Chatter Statistics We also collected pairwise information for 4-
hour period over the Philosophy chatroom by manually studying the data to
identify the pairs. The results are shown in Figure 4 for message size, message
arrival and conversation duration. A more interesting result is shown in Figure 5
which indicates that conversation duration in Philosophy chatroom has a linear
decline.

1 There are several choices of clustering algorithms. In our experiments we applied a
thresholding scheme on the first dimension.

Philosophy Political USA Philosophy Political USA

Metric Msg Size Msg Size Msg Size Arr. Time Arr. Time Arr. Time

MEDIAN 49 61 19 61 64 41

AVERAGE 55 68 40 66 69 57

STD DEV 34 38 66 37 34 54

VARIANCE 1210 1466 4456 1430 1216 2965

SKEWNESS 1 1 3 1 1 1

KURTOSIS 1 8 13 2 5 3

Table 3. Chatroom Statistics: Message Size and Interarrival Time

4.2 Verifying and Interpreting the Results

In order to test how good the SVD-based algorithm performs we design a tool
which requires a preprocessing of chatroom message logs. In particular, we man-
ually study the 4-hour period over the Philosophy and USA chatroom data to
identify the communicating pairs and to draw a manual-graph. We made several
passes over the data by simply reading and interpreting the messages. With the
first pass over 2K to 3K messages, we identify communicating pairs, i.e. who-

is-talking-to-whom. In the subsequent passes, we consider only the identified
communicating pairs. For a given pair of user, we implement a simple message
filter operation based on the sender nickname and obtained messages belonging
to either users. Then, we read those filtered messages and identify messages be-
longing precisely to the conversation of the given pair of users. Manual-graph
consists of edges (communicating pairs) and the nodes (users). Each pairs (edges)
has message log of their conversation.

The verification tool takes (i) the edges and nodes of the manual-graph graph,
and (ii) clusters of nodes generated by the SVD-based algorithm (i.e. the output
of the algorithm). Program first merges clusters sharing at least one node. We
assume that these clusters are cliques and we list all possible edges in these
cliques. The nodes and edges induced by the clusters of the SVD-based algorithm
are compared with the edges and nodes of the manual-graph. Any node which
is in the manual-graph but not a member of any cluster produced by the SVD
algorithm is assumed to be missed by the algorithm. Similarly, any edge of the
manual-graph which is not a member of any cluster is assumed to be missed by
the SVD. Program outputs missed and found edges and nodes.

Message logs produced during manual-graph generation process are used to
calculate pairwise statistics. They are also used to calculate weights for the
edges and nodes of manual-graphs. Weight of an edge is the number of messages
exchanged during the conversation of node pairs. Weight of the node is the total
number of messages send by this node. Verification program outputs edges and
nodes sorted in their weights. Miss of an edge or a node with high weight is not
desirable and can be used as a performance metric for evaluating the algorithm.

Time Slots % of Missed Edges % of Missed Nodes

15 sec 71 % 69%

45 sec 55 % 44%

90 sec 44 % 28%

Table 4. Philosophy chatroom: 240-min (4-hour) window over 4-Hour data with vari-
ous time slots

Interpretation We examine the impacts of (i) time slots, and (ii) disjoint vs
sliding windows on the performance of the algorithm. In Table 4, we show the
results obtained from a large matrix which is obtained from 4-hour data. There
is only one matrix corresponding to window of size 240-min (4-hour) over 4-hour
data. We experimented different time slots, i.e. 15, 45 and 90 sec. Evidently
the longer the time slot the better the results are. Figure 4, presents histogram
of message interarrival time for pairwise communications in philosophy channel.
Interarrival times almost always fall below 90-sec, which we assume is the reason
for the performance increase as time slots gets larger. As the time slot gets
smaller, number of the columns in the matrix increases yielding more sparse
matrix. Moreover, the impact of the noise in the computations is reduced by
larger time slots.

In Table 5, we fixed time slot as 30-sec and divided the 4-hour time interval
into various window sizes. We would like to examine the impact of time various
(15, 30, 90 min) window sizes. Here, we have the same tendency as we reported
above. As the window size increases, the performance of the SVD algorithm
increases. We claim that results here are strongly related to the duration of
the conversation metric presented in Figure 4. Simply, some of the conversations
might get chopped at the allotted time interval. Certain duration of conversation
values for communicating pairs might create such an increase in the number of
chopped messages for certain window sizes. A conversation falling on two or more
window might be missed by SVD algorithm. Therefore the larger the window
size, the better the results are.

Finally, in Table 6, we compare the performance of our algorithm as a func-
tion of different sliding window schemes with fixed time slot of 15-sec. The re-
sults show that overlap size does not have any significant impact. The difference
among the results of Philosophy and Political channel is caused by the nature of
the chatroom. Since there is a chopping of the conversation at the allotted time
interval with the fixed window scheme, our sliding window approach provides an
increase in performance of the SVD algorithm. When we compare results in Ta-
ble 6 and 5, we see that percentage of missed nodes decreases with overlapping;
even though time slot used in Table 6 is 15-sec which has been shown to have
highest miss rates in Table 4.

Sampling Window % of Missed Edges % of Missed Nodes

15 min 47% 36%

30 min 42% 65%

90 min 26% 20%

Table 5. Philosophy chatroom: Non-overlapping windows over 4-Hour data with 30-
second time slots

Sliding window overlap % of Missed Edges % of Missed Nodes

Phil. 15 min. 42% 28%

Phil. 10 min 42% 28%

Polit. 15 min 58% 41%

Table 6. Philosophy and Political chatroom: 30-Minute overlapping windows (sliding
windows) over 4-Hour data with 15 second time slots. The performance of the SVD-
based algorithm varies depending on the nature of the chatroom.

5 Conclusions

The Internet chatrooms can be abused by malicious users who can take advan-
tage of its anonymity to plan for covert and unlawful actions. We presented
a fully automated system for data collection and discovery of chatter groups
and implicit communication patterns in IRC without semantic information or
human intervention. We have shown that the chatroom traffic characteristics
changes significantly from one chatroom to another. However, quantifying such
characteristics enables us to build novel tools that can not only eavesdrop into a
chatroom but also it can discover sub-communities and hidden communication
patterns within the room.

This work could aid intelligence community to eavesdrop in chatrooms, profile
chatters and identify hidden groups of chatters in a cost effective way. Our future
work focuses on enhancing the SVD algorithm working in the time domain with
topic based information. Our preliminary results show that such enhancement
is possible.

References

1. Kalt, C.: RFC 2810 Internet Relay Chat: Architecture (2000)
2. Kalt, C.: RFC 2811 Internet Relay Chat: Channel management (2000)
3. Kalt, C.: RFC 2812 Internet Relay Chat: Client protocol (2000)
4. Kalt, C.: RFC 2813 Internet Relay Chat: Server protocol (2000)
5. Johns, M.S.: RFC 1413 Identification Protocol (1993)
6. Gelhausen, A.: IRC statistics. http://irc.netsplit.de (1998) (accessed 10 February

2004).
7. Mutton, P., Golbeck, J.: Visualization of semantic metadata and ontologies.

In: Seventh International Conference on Information Visualization (IV03), IEEE
(2003) 300–305

8. Mutton, P.: Piespy social network bot. http://www.jibble.org/piespy/ (2001)
(accessed 14 October 2003).

9. Viegas, F.B., Donath, J.S.: Chat circles. In: CHI 1999, ACM SIGCHI (1999) 9–16
10. Krebs, V.: An introduction to social network analysis. www.orgnet.com/sna.html

(2004) (accessed 10 February 2004).
11. Magdon-Ismail, M., Goldberg, M., Siebecker, D., Wallace, W.: Locating hidden

groups in communication networks using hidden markov models. In: NSF/NIJ
Symposium on Intelligence and Security Informatics (ISI 03), Tucson, PA, ISI
(2003)

12. Goldberg, M., Horn, P., Magdon-Ismail, M., Riposo, J., Siebecker, D., Wallace,
W., Yener, B.: Statistical modeling of social groups on communication networks.
In: First conference of the North American Association for Computational Social
and Organizational Science (CASOS 03), Pittsburgh PA, CASOS (2003)

13. Golub, G.H., Loan, C.F.V.: Matrix Computations. 3rd edn. The Johns Hopkins
University Press, Baltimore, MD (1996)

0 50 100 150 200 250
0

50

100

150

200
Message Interarrival Time Distributions

0 50 100 150 200 250 300
0

200

400

600

800

of

 m
es

sa
ge

s

0 50 100 150 200 250 300
0

200

400

600

800

Message Interarrival Time (sec)

Philosophy

Political

Usa

0 50 100 150 200 250
0

50

100

150

200
Message Size Distributions

0 50 100 150 200 250 300 350 400 450
0

500

1000

of

 m
es

sa
ge

s

0 50 100 150 200 250 300 350 400 450 500
0

2000

4000

6000

Message Size (# of chars)

Philosophy

Political

Usa

Fig. 2. Message arrival and message size histograms for all three chatrooms

2.5 3 3.5 4 4.5 5 5.5
−1

0

1

2

3

4

5

6

LOG of Message Size (# of chars)

LO
G

 o
f #

 o
f m

es
sa

ge
s

Philosophy Channel Message Size Distribution (log log)

y = − 0.52*x3 + 4.8*x2 − 14*x + 20

3 3.5 4 4.5 5 5.5 6
−1

0

1

2

3

4

5

6

7

8

LOG of Message Size (# of chars)

LO
G

 o
f #

 o
f m

es
sa

ge
s

Political Channel Message Size Distribution (log log)

y = − 1.5*x2 + 11*x − 13

2.5 3 3.5 4 4.5 5 5.5 6 6.5
1

2

3

4

5

6

7

8

9

LOG of Message Size (# of Chars)

LO
G

 o
f #

 o
f m

es
sa

ge
s

USA Channel Message Size Distribution (log log)

y = − 1.7837*x + 13.183

Fig. 3. Message size (log-log) distributions for all three chatrooms. The USA chatroom
obeys the power-law.

0 20 40 60 80 100 120 140
0

5

10

Message Size (# of chars)

Philosophy Channel Pairwise Conversation Statistics

of

 p
ai

rs

0 10 20 30 40 50 60 70 80
0

5

10

15

Message Interarrival Time (sec)

of

 p
ai

rs

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

of

 p
ai

rs

Duration of Conversation (sec)

Message size

Message Interarrival Time

Duration of Conversation

Fig. 4. Pairwise Communication Statistics for Philosophy chatroom. The statistics
are computed over 50 pairs of chatters during 08:00-12:00 hour period

Fig. 5. Pairwise Communication Durations in Philosophy chatroom 8:00-12:00.

