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ABSTRACT

This paper considers the use of computational stylistics for
performing authorship attribution of electronic messages,
addressing categorization problems with as many as 20 dif-
ferent classes (authors). Effective stylistic characterization
of text is potentially useful for a variety of tasks, as language
style contains cues regarding the authorship, purpose, and
mood of the text, all of which would be useful adjuncts to
information retrieval or knowledge-management tasks. We
focus here on the problem of determining the author of an
anonymous message, based only on the message text. Sev-
eral multiclass variants of the Winnow algorithm were ap-
plied to a vector representation of the message texts to learn
models for discriminating different authors. We present re-
sults comparing the classification accuracy of the different
approaches. The results show that stylistic models can be
accurately learned to determine an author’s identity.
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1. INTRODUCTION

As electronic communication increasingly occupies a cen-
tral role in the global business, political, and intelligence
communities, it has become increasingly important to be
able to accurately identify the authors of an electronic mes-
sages. For example, it may be important to know which
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intercepted documents discuss terrorist attack plans, but it
is equally important to pick out those messages known to
be from major enemy players. However, a message author
who wishes to remain unidentified currently has many ways
to do so.

We consider the use of computational stylistics for au-
thorship attribution of electronic messages, addressing cate-
gorization problems with as many as 20 different classes (au-
thors). We compare results using several multi-class general-
izations of the Exponentiated Gradient learning algorithm
(EG); we have shown in previous work [12] that the EG
algorithm outperforms other popular learning methods for
stylistic classification.

Author attribution of electronic messages constitutes an
important and difficult testbed for computational stylistics
techniques, for two main reasons. First is the fact that such
messages are typically quite short (tens or perhaps hundreds
of words compared with thousands for articles or books).
Thus there is less information in any given text to go on.
Second, since e-mail is an informal and fast-paced medium,
individuals’ writing styles adapt quickly to different con-
texts or correspondents, and so even messages by the same
individual may vary greatly in style.

The usual goal in text mining and analysis is to gain an
understanding or summary of the topic, or topics, covered
in the text (see [17] for an excellent survey). However, the
meaning of a text is more than the topic it describes or
represents. Textual meaning, broadly construed, includes
also dimensions of: affect (what feeling is conveyed by the
text?), genre (in what community of discourse does the text
function?), register (what is the function of the text as a
whole?), and personality (what sort of person, or who, wrote
the text?). These aspects of meaning are largely captured
by the text’s style of writing, which may be roughly defined
as how the author chose to express her topic, from among a
very large space of possible ways of doing so. This contrasts,
thus, the how of a text (style) from the what (topic).

Due to the focus on topic-based text analysis, little work
to date has been done on text mining using style. However,
while topic is the most easily accessible aspect of a text’s
meaning, since content words carry much of a text’s topi-
cal meaning, the complementary problem of understanding
textual style is also crucial to understanding a text in its
context. Therefore stylistic text analysis is a critical compo-
nent of effective processing for the growing and increasingly
complex text collections available today.



2. COMPUTATIONAL STYLISTICS

The problem considered in this paper concerns categoriza-
tion by style and thus may be viewed in the context of the
stylometric research which has been vigorously pursued for
decades, mostly in the context of authorship attribution [9,
14]. Although some crossover work between stylometrics
and text categorization has been done, the bulk of stylo-
metric research has differed from the more recent work in
text categorization in a few important ways.

While categorization by topic is typically based on key-
words which reflect a document’s content, categorization by
author style uses precisely those features which are indepen-
dent of content. Most generally, style is carried by features
that indicate the author’s choice of one mode of expression
from among a set of equivalent modes. This may be ex-
pressed through lexical choice, choice of syntactic structure,
or of discourse strategy.

In order to practically approach the problem, stylomet-
ric models for categorization have typically been based on
hand-selected sets of content-independent, lexical [16], syn-
tactic [18], or complexity-based [21] features. Researchers in
text categorization by topic typically use much larger fea-
ture sets, often in conjunction with automated feature se-
lection methods; some work in the stylometric community
has also considered automated methods for selecting fea-
tures [7]. Moreover, stylometric research has tended to use
statistical methods such as multivariate analysis [2], rather
than machine-learning algorithms, for categorization.

Computational stylistics comprises a growing body of work
in which machine learning techniques are used to address
problems of document stylistic analysis. Multilayer percep-
tron networks were applied to frequencies of a small set of
function words as features by Matthews and Merriam [13]
and Tweedie et al. [19]. Wolters and Kirsten [20] compared
nearest-neighbor learning algorithms with part-of-speech tag
frequencies and demonstrated effective classification based
on genre. More complex syntactic features were used by
Stamatatos et al. [18] in conjunction with a discriminant
analysis to classify Greek newspaper articles by genre. Arg-
amon et al. [1] have used the EG algorithm [11] to learn
classification models for distinguishing male from female au-
thorship, using function words and shallow syntactic fea-
tures. The problem of authorship identification for e-mail
has been previously addressed by de Vel [6], who used a
comparatively small number of features with SVMs [4] for
binary authorship classification. His results indicate (inter
alia) the potential importance of orthographic text features,
such as capitalization and word-length, in style analysis.

3. THE CORPUS

Unfortunately, there are not yet any publically available
benchmark collections for experimentation on author attri-
bution of electronic messages. We have therefore built such
a collection, which we are making available to the research
community at large. Due to privacy considerations, we could
not use a corpus of personal e-mail messages. Instead, we
used messages culled from several Usenet newsgroups® on a
variety of topics. The groups we chose are not edited, and
hence individual messages may drift from time to time from
the nominal topic, though we expect the topic of the group
to set a general tenor. For this initial work, we chose sev-

!See http://groups.google. com.
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Table 1: Summary of statistics of the Usenet post
corpora used in the study: maximum, minimum,
and average number of posts for any author, per-
centage of posts by the maximum author, and max-
imum, minimum, and average length (in word to-
kens) of each post.

posts/author tokens/post
Subcorpus || min/max/avg | max % | min/max/avg
books(2) 116/131/124 53% | 9/409/61
books(5) 89/131/111 24% | 9/1250/95
books(20) 33/131/67 10% | 3/4142/102
books(10/) 10/131/52 13% | 3/1250/85
theory(2) 84/102/93 55% | 12/584/167
theory(5) 51/102/79 26% | 11/584/155
theory(20) 15/102/40 13% | 6/3111/150
theory(10/) 10/102/34 15% | 11/3111/151
lang.c(2) 162/300,/231 65% | 12/287/%5
lang.c(5) 128/300/175 34% | 7/399/75
lang.c(20) 55,/300/101 15% | 7/445/79
lang.c(10/) 10/300/74 20% 7/445/79

eral newsgroups on a range of topics: rec.arts.books (ab-
breviated books), comp.theory (theory), and comp.lang.c
(lang.c). Posts in comp.lang.c often contain code snip-
pets which we could not easily reliably filter out.

From each newsgroup we downloaded the 500 most recent
discussions (threads), each thread consisting of many indi-
vidual postings. Each posting was then processed to remove
any material quoted from previous posts as well as extrane-
ous header material, the newsgroup and author of the post
was recorded. Each set of newsgroup posts was then used
to compose several subcorpora with different numbers of
authors for attribution: all posts by the (i) 2 most frequent
authors, (ii) 5 most frequent authors, (iii) 20 most frequent
authors, and (iv) 10 most frequent and 10 least frequent au-
thors (minimum of 10 posts each in the corpus), denoted
“10/”.  Table 1 gives details regarding the sizes of these
subcorpora.

4. TEXT FEATURES

We use here lexical /orthographic features as indicator vari-
ables for stylistic choice at multiple levels of linguistic struc-
ture. The kinds of features that may be reliable stylistic
indicators are somewhat dependent on the domain of text
being considered. The corpus considered in this study
consists of informal messages in a variety of Internet news-
groups, a medium which allows fairly wide stylistic latitude,
but which also has its own conventions (observed by differ-
ent individuals to differing extents). Thus the features that
we considered are a combination of generic and newsgroup-
specific ones.

Most basic is a list of 303 generic function words (taken
from [15]?), which generally serve as proxies for choice in the
syntactic (e.g., preposition phrase modifiers vs. adjectives or
adverbs), semantic (e.g., usage of passive voice indicated by
auxiliary verbs), and pragmatic (e.g., first-person pronouns
indicating personalization of a text) planes. Function words
have been shown to be effective style markers in previous

2 Available on-line at http://www.cse.unsw.edu.au/~min
/ILLDATA/Function_word.htm



studies [1, 10, 19]. We add to the list of function words also
lexical items special to the newsgroup domain: net abbrevi-
ations (netabbrevs). Netabbrevs are typically acronyms for
commonly used locutions, such as “BTW” (by the way) or
“N2S” (needless to say). Informal observation suggests that
different user communities often use somewhat different sets
of netabbrevs. We took as features a list of 190 netabbrevs
taken from a webpage listing®.

In addition, we also considered a parallel set of ortho-
graphic and placement features, both individually and in
combination with the above lexical features (where applica-
ble): Capitalization (Uppercase, lowercase, ALL UPPERCASE,
MiXeD CaSe, punctuation, number), Placement (Subject, be-
ginning of line, beginning of paragraph, other), Word length,
and Line length.

5. LEARNING ALGORITHMS

The primary task we address here is to learn a model to
classify electronic messages according to their author, based
on stylistic features as above. We examine here multiclass
variants of the Exponentiated Gradient (EG) algorithm [11].
The EG algorithm has nice theoretical mistake-bound prop-
erties and variants have previously been shown to be effec-
tive for text-categorization by topic (e.g. [5]). In fact, in our
previous work on stylistic text categorization [12], a vari-
ant of EG considerably outperformed both Naive Bayes and
Ripper, other algorithms commonly used for text catego-
rization.

5.1 Multiplicative-update learning

The basic EG algorithm learns linear classifiers for two-
class problems. Briefly, the balanced EG variant upon which
we base our work is as follows. We initialize two component
weight vectors wt = {1,1,...,1} and w™ = {—1,..., -1},
defining w = wt + w~. We then calibrate the vectors us-
ing the following iterative procedure. The training examples
are randomly ordered. For each training example x, we de-
fine ¢(z) € {0,1} to be the class indicator function. Let
s(w,z) = 1if w-z > 0 and s(w,z) = 0 otherwise, where
w is the weight vector at the time that example x is en-
countered, and let w; and x; be the ith element in w and =z,
respectively. Then we take the examples one at a time in a
random order and iteratively update the weights after each
example using the formulas:

o w14 g)me@—swa)
— w (14 B)Filswe)—e@)

+
w;

w;
(3 is a learning constant greater than 0; in all our experiments
we used 8 = 2. Thus weights that improperly reduce the dot
product are increased, and vice versa. If (¢(z)—s(w,z)) > 0,
and so w™ is increased, the update is termed promotion, and
conversely if (c(z) — s(w,z)) < 0 the update is termed de-
motion. Note that as in EG, but unlike Balanced Winnow,
we allow z; to take on non-binary values. However, like Bal-
anced Winnow, but unlike EG, we restrict s(w, z) to binary
values. A computationally similar variant of this update
rule which we have found to work somewhat better than the
above rule for stylistic classification, is:

wh w4 fay) @ -swa)
— w (14 Bay) (D) —e@)

3http://www.geocities.com/TheTropics/Shores/1224
/Netiquette.html
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Once all the examples have been used for training, they are
randomly reordered and another cycle of updates is run.
(Convergence is usually reached within 20 or 30 iterations.)
Along the way, any element of w™ or w™ that drops below
some threshold (0.000001 of the sum of all the weights) is
set to zero.

The intuition behind the update rule is that weights of
features that appear most prominently in misclassified docu-
ments are changed most dramatically. A well-known advan-
tage of multiplicative update rules such as we use is that the
weights of irrelevant features tend quickly to zero. This is
important for problems such as stylistic classification, where
determining relevant features in advance is particularly dif-
ficult.

5.2 Multiclass learning

The usual way to extend a two-class learning algorithm for
multiclass problems is to learn a set of two-class models, and
then to combine their binary classifications and confidences
thereof to give a final class for an example. This combina-
tion is usually performed using a type of “winner-take-all”
strategy. A widely-used paradigm is one vs. all (OvA), in
which, for a learning problem with n classes ci, ..., cn, the
system learns n models for the binary problems: “c; vs.
everything else”, “ca vs. everything else”, and so on. Learn-
ing will thus output an array M of models, M; through M,,.
Then, to classify a test example x, that class is chosen whose
model gives the highest confidence in its classification (for
linear classifiers, confidence for model m on example x is
easily measured as m - ). While this method is reasonably
efficient, it can be shown that there are concepts that can-
not be represented by OvA models, even though they can
be learned by ensembles of linear classifiers.

A second combination method is all vs. all (AvA) in which
n(n — 1) models are learned, for the problems “cq1 vs. ¢2”,
“c1 vs. ¢3”, and so on through “cn,—1 vs. ¢,”. Here the
output will be a 2-dimensional array of models (with empty
diagonal), M; ;, 1,7 < n,i # j. To classify a test example z,
then, for each possible class c¢;, the confidences of the n — 1
classifiers indicating c; are combined, usually by summing
them (weighted voting). We consider here also two other
variants: using the minimum confidence for a class, and us-
ing the maximum confidence for a class. Once the combined
confidence for each class is computed, the class with the
highest combined confidence is chosen.

The naive implementation of the above schemes (given
in Fig. 2) has each component model calibrating its weight
vector independently of all other component models. How-
ever, this can lead to inefficiencies and even inaccuracies in
learning, as the final classification may depend on interac-
tions between the component models. A recent technique
which addresses this issue has been termed “ultraconserva-
tive algorithms” [3]. Consider that, in the multi-class case,
a given component model M; is only “correct” or “incor-
rect” for a given training example (z,c(x)) in relation to
the confidences given by the other component models for
that example. For the OvA case, we have then:

M;—(x) is correct
M;2c(z) is correct

iff Vj;éi,Mi~$>Mj~$
iff M;-x< M., -x

Thus all models for an incorrect class with confidence higher
than the model for the correct class ¢(x) should be demoted
for x, and the model for the correct class should be promoted



MULTICLASSLEARN(X, ¢, Niter ):
1. Initialize model array M (variant-dependent)
2. For i < 0 to niter, do:

(a) Reorder X randomly
(b) For each x € X, UPDATE(z, ¢(z), M)
(c) For each m € M, NORMALIZE(m)

3. Output M

NORMALIZE(m):
1. Let m = (wh,w™)

2. For each i:
wi

(a) wi —wf /(%
(b) wi —w; /(32;

w;’)
w;’)
Figure 1: Generic update-based multi-class learning
algorithm for example set X', class indicator function

¢, and number of iterations n;.... Regarding UPDATE,
see text and Figures 2 and 3.

NAIVEONEVSALLUPDATE(z, ¢, My, ):
1. For each i < n:

(a) If i # c and M; -« > 0, then: DEMOTE(M;, x)
(b) If i = c and M; - x < 0, then: PROMOTE(M;, )

NAIVEALLVSALLUPDATE(z, ¢, My,):
1. For each i < mn, i # c:

(a) If M, .-z > 0, then: DEMOTE(M; ¢, )
(b) If M.; -z <0, then: PROMOTE(M_;,x)

Figure 2: Naive update variants for example z, cor-
rect class ¢, and model array M. See text for details.

for x exactly when it does not give the highest confidence.
This schema we implement in three variants, one for the
OvA classification paradigm, and two for the AvA paradigm
(refer to Fig. 3). For ONEVSALL update, we compare the
model confidence for each incorrect class to that for the
correct class. If the incorrect class scores higher than the
correct class, we update both models appropriately. In the
straightforward update for the AvA case, which we call AL-
LVSALL update, we compare all models M. ; whose confi-
dence indicates the correct class ¢ over some other class j to
all models M; . whose confidence indicates an incorrect class
i over the correct class c. For each such pair-wise compari-
son, if the ‘incorrect’ model has a higher confidence than the
‘correct’ model, the models are appropriately updated. This
‘model-by-model’ updating rule, however, does not take into
account the fact that model confidences are combined in the
eventual classification. Hence we also propose the RowVs-
Row update rule, in which the combined confidence for each
incorrect class is compared to the combined confidence for
the correct class. If the incorrect class’s confidence is higher,
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ONEVSALLUPDATE(z, ¢, My,):
1. For each i < mn, i # c:

(a) If M; -z > M. - z, then:
i. DEMOTE(M;, )
ii. PROMOTE(M., x)

ALLVSALLUPDATE(z, ¢, Mnn):
1. For each 4,5 < n, i,j # c:
(a) If M-z > M., -, then:

i. DEMOTE(M; ¢, x)
ii. PROMOTE(M,,;, )

ROWVSROWUPDATE(z, ¢, My 5 ):
1. For each i < n, i # ¢
(a) 30, Mij-x >3, Mej -, then:

i. For each j < n, DEMOTE(M; ;,x)
ii. For each j < n, PROMOTE(M.,;, =)

Figure 3: Ultraconservative update variants for ex-
ample z, correct class ¢, and model array M. See
text for details.

then all models in both rows are updated. Details of the up-
date algorithms are given in Fig. 3.

In order to ensure proper convergence, balance must be
maintained between the various weight vectors. In the present
work we use a simple method of normalizing the weight vec-
tors after each pass through the training set (see Fig. 1).
While we have as yet no convergence proof, our experiments
(below) show that this normalization scheme gives reliable
convergence.

6. EXPERIMENTS
6.1 Setup

For each subcorpus of a newsgroup and a selection of au-
thors therefrom, we evaluated the authorship attribution
performance of different learning methods using 10-fold cross-
validation. We measured classification accuracy, and in ad-
dition examined the precision-recall behavior by examining
average F3—; over the individual authors in each dataset, as
well as average precision over the authors in each dataset.
Comparing these numbers allows us to roughly evaluate the
stability of each method over the different authors in each
dataset.

The primary choice of learning method is between “one vs.
all” (OvA) and “all vs. all” (AvA). Within OvA there are
two variants, the naive and the ultraconservative (denoted
“Cons” in the tables). Within AvA, there are three com-
bination methods (vote, min, and max), and three modes
of ultraconservative update (none, all model pairs, and by
rows). Results are given in Tables 2, 3, 4, and 5.

6.2 Classification Results

Due to the lack of a standard testbed for author attribu-
tion in this domain, we evaluate efficacy of the approached



Table 2: Summary of classification results for One
vs. All learning, with overall accuracy, min, max,
and average Fj—; with standard deviation, and av-
erage precision with standard deviation. ‘Group’ is
the newsgroup. ‘N’ is the number of authors, either
the 2, 5, or 20 most frequent or 10/, the 10 most
and least frequent authors. ‘Con’ is whether or not
learning was ultraconservative.

Group | N Con Acc | Frin Fraz | Fu P,

books 2 no 66% | 0.65 0.67 | 0.66 0.67
books 2 yes 67% 0.63 0.71 | 0.67 0.70
books 5 no 40% 0.29 0.52 | 0.39 0.42
books 5 yes 43% 0.21 0.56 | 0.41 0.45
books 10/ | no 22% | 0 (4) 0.44 | 0.17 | 0.26
books | 10/ | yes | 21% | 0(4) | 044 | 016 | 0.24
books 20 no 20% | 0.03 0.55 | 0.19 0.24
books 20 | yes 24% | 0.10 0.60 | 0.24 | 0.29
theory | 2 no 73% 0.69 0.76 | 0.73 0.73
theory 2 yes 70% 0.65 0.74 | 0.70 0.70
theory | 5 no 42% | 0.24 0.77 | 0.43 0.56
theory | 5 yes 41% | 0.27 0.78 | 0.45 | 0.40
theory | 10/ | no 18% | 0 (12) | 0.40 | 0.066 | 0.13
theory | 10/ | yes 29% | 0 (5) 0.74 | 0.19 | 0.29
theory 20 no 19% | 0 (8) 0.42 | 0.096 | 0.17
theory | 20 | yes 26% | 0 (4) 0.78 | 0.19 | 0.27
lang.c 2 no 99% 0.99 0.99 | 0.99 0.99
lang.c 2 yes 99% 0.99 0.99 | 0.99 0.99
lang.c 5 no 73% 0.46 0.96 | 0.68 0.78
lang.c 5 yes 68% 0.33 0.95 | 0.61 0.67
lang.c 10/ | no 47% | 0 (4) 0.85 | 0.25 0.35
lang.c | 10/ | yes || 53% | 0(5) | 0.89 | 0.31 | 0.34
lang.c 20 no 33% | 0.026 0.72 | 0.23 0.40
lang.c | 20 |yes | 43% | 0(1) | 094 | 030 | 0.76

described here both comparatively, and against the simplest
baseline of always classifying according to the majority class
in each dataset (see Table 1).

We first examine OvA learning, in Table 2. First note
that in all cases, we obtained classification accuracies no-
ticeably higher than the baseline, establishing the validity
of the method. Furthermore, in most cases ultraconservative
learning gives a slight improvement, and never significantly
reduces accuracy. This empirically confirms the usefulness
of ultraconservative updating. Significantly, all metrics ex-
amined give qualitatively similar results. (Note that for two-
classes, all algorithms examined are theoretically identical,
so some results are omitted due to lack of space.)

If results for AvA learning are now compared to those for
OvA, a distinct pattern emerges which is consistent in all
datasets. Apparently, “ultraconservative update by rows” is
usually preferred to other AvA variants as well as to OvA
learning, usually with either voting or maximum combina-
tion. These strategies sometimes give results nearly 30%
higher than the baseline. Also, the Fjz—; range for these
variants is usually narrow, indicating both overall reliabil-
ity and consistency for each author. To our knowledge, the
row-based variant of ultraconservative updating has not pre-
viously been examined, so it bears further scrutiny (perhaps
in the framework of “constraint classification” [8]).
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Table 3: Summary of classification results for All vs.
All learning, for newsgroup rec.arts.books. ‘Com’
is the combination method: ‘vote’, ‘min’, or ‘max’.
‘Con’ is how ultraconservative learning was applied:
‘none’, ‘all’, or ‘by rows’.

N Com | Con Acc Frin Fraz | Fu P,

5 vote none || 38% 0.29 0.44 | 0.35 0.46

5 vote all 33% 0.18 0.43 0.30 0.41

5 vote | rows || 46% | 0.38 0.58 | 0.46 | 0.48

5 min none || 40% 0.32 0.49 | 0.38 0.45

5 min all 36% 0.25 0.44 | 0.34 0.43

5 min rows 34% 0.13 0.48 | 0.29 0.37

5 max | none || 29% 0.14 0.41 | 0.23 | 0.33

5 max | all 29% 0.11 0.40 | 0.24 | 0.35

5 max | rows || 45% | 0.35 0.51 | 0.46 | 0.46

10/ | vote | none || 30% | 0(10) [ 0.46 | 0.13 | 0.12

10/ | vote | all 23% | 0(6) | 038 | 0.15 |0.22

10/ | vote | rows || 21% | 0 (6) 0.35 | 0.14 | 0.23

10/ | min none || 24% | 0 (3) 043 | 0.17 | 0.20

10/ | min | all 25% | 0(4) | 052 | 018 |0.24

10/ | min rows || 16% | 0 (7) 0.27 | 0.10 | 0.17

10/ | max | none || 17% | 0 (10) | 0.24 | 0.082 | 0.086
10/ | max | all 14% | 0(10) | 0.25 | 0.071 | 0.073
10/ | max | rows || 23% | 0 (4) 0.37 | 0.17 | 0.21

20 | vote | mone || 25% | 0 (4) 0.47 [ 0.18 | 0.26

20 vote all 21% 0(2) 0.35 | 0.17 0.30

20 | vote rows || 23% | 0 (2) 0.56 | 0.21 0.25

20 | min none || 26% 0.08 041 | 0.24 | 0.30

20 min all 23% 0 (2) 0.55 | 0.20 0.28

20 | min rows || 14% | 0 (5) 0.26 | 0.091 | 0.23

20 | max | none || 11% | 0 (6) 0.28 | 0.072 | 0.098
20 max all 9.5% | 0(5) 0.20 | 0.067 | 0.11

20 | max | rows || 24% | 0 (1) 0.47 | 0.18 | 0.27

Table 4: Summary of classification results for All vs.
All learning, for comp.theory; columns as in Table 3.

N Com | Con || Acc Foin Fraz | Fu P,

5 vote none | 43% 0.28 0.67 | 044 | 0.55

5 vote all 37% 0.25 0.66 | 0.38 0.50

5 vote rows | 41% 0.27 0.86 | 0.43 0.55

5 min none || 40% 0.27 0.64 | 042 | 0.51

5 min all 39% 0.26 0.73 | 0.41 0.47

5 min rows | 39% 0.15 0.47 | 0.36 0.44

5 max | none || 31% 0.10 0.52 | 0.31 | 0.44

5 max all 28% 0.16 0.44 | 0.26 0.41

5 max rows | 43% 0.24 0.83 | 0.44 0.51

10/ | vote none || 28% | 0 (11) 0.57 | 0.11 0.13

10/ | vote |all || 20% | 0(7) | 067 | o017 |0.31

10/ | vote rows || 23% | 0 (4) 0.67 | 0.17 | 0.27

10/ | min none || 24% | 0(2) 0.61 | 0.16 | 0.25

10/ | min |all || 21% | 0(5) | 060 |0.14 |0.20

10/ | min rows || 18% | 0 (12) 0.25 | 0.072 | 0.094
10/ | max none || 17% | 0 (11) 0.31 | 0.063 | 0.096
10/ | max all 11% | 0 (10) 0.23 | 0.050 | 0.070
10/ | max | rows || 26% | 0 (6) 0.70 | 0.18 | 0.23

20 | vote none || 24% | 0 (8) 0.67 | 0.17 | 0.21

20 | vote | all 20% | 0(9) | 034 |0.10 |0.20

20 | vote | rows || 24% | 0 (3) 0.74 | 0.20 | 0.24

20 | min none || 23% 0 (3) 0.35 | 0.15 | 0.24

20 |min |all | 20% | 0(8) | 046 |0.11 |o0.20

20 | min | rows || 15% | 0 (16)* | 0.24 | 0.03 | 0.11

20 | max | none || 13% | 0 (8) 0.39 | 0.075 | 0.12

20 max all 11% | 0 (10) 0.27 | 0.056 | 0.080
20 | max | rows || 22% | 0 (2) 0.73 | 0.18 | 0.23




Table 5: Summary of classification results for All vs.
All learning, for comp.lang.c; columns as in Table 3.

N Com | Con || Acc | Fuin Fraz | Fu P,

5 vote none || 65% 0.45 0.88 | 0.62 0.67
5 vote all 62% | 0.42 0.83 | 0.60 | 0.68
5 vote rows || 64% | 0.47 0.89 | 0.59 | 0.67
5 min none || 71% | 0.42 0.96 | 0.65 | 0.71
5 min all 66% 0.26 0.95 | 0.58 0.68
5 min rows || 62% 0.32 0.90 | 0.58 0.68
5 max none || 48% 0.32 0.76 | 0.45 0.58
5 max all 35% 0.32 0.39 | 0.36 0.58
5 max rows || 59% 0.26 0.90 | 0.53 0.66
10/ | vote | nome || 43% | 0(10) [ 0.85 [ 0.19 [ 0.25
10/ | vote |all || 29% | 0(9) | 047 | 015 |0.21
10/ | vote rows || 55% | 0 (2) 0.89 | 0.35 | 0.40
10/ | min none || 47% | 0 (2) 094 | 029 | 0.33
10/ | min | all | 46% | 0(3) | 092 | 029 | 0.34
10/ | min rows || 47% | 0 (5) 0.83 | 0.24 | 0.27
10/ | max | none || 20% | 0 (10) | 0.31 | 0.093 | 0.13
10/ | max | all 16% | 0(9) | 057 | 0.093 | 0.11
10/ | max | rows || 53% | 0 (1) 0.84 | 0.32 | 0.38
20 | vote | mome || 29% | 0 (1) 0.75 [ 0.22 | 0.38
20 vote all 27% | 0(2) 0.80 | 0.25 0.39
20 vote rows || 45% | 0.063 0.87 | 0.38 0.42
20 | min none || 43% | 0.042 | 0.88 | 0.37 | 0.41
20 min all 35% | 0(1) 0.89 | 0.29 0.38
20 | min rows || 40% | 0 (1) 0.83 | 0.31 | 0.33
20 | max | none || 13% | 0 (4) 0.28 | 0.086 | 0.20
20 max all 11% | 0 (3) 0.31 | 0.086 | 0.23
20 max rows || 39% | 0.028 0.83 | 0.30 0.34

7. CONCLUSIONS

This paper presents initial results for authorship attribu-
tion on electronic messages, using linear separator learning
and lexical/orthographic features. We tested a variety of
learning algorithms based on EG, using a test corpus which
we are making publically available. It will constitute a first
benchmark collection for research on stylistic attribution.

Generally speaking, our results are quite promising and
bear witness to the validity of the approach. The major
limitation of the current work is the simplicity of its fea-
ture set—though large, the set of features considered here is
comparatively simple. Future work will include expanding
the feature set to include other types of style markers, such
as parts-of-speech and complexity metrics. As well, we in-
tend to investigate the use of automatic feature generation
techniques to search the space of compound features in or-
der to improve learning accuracy. We believe that this will
be necessary, due to the unavoidable idiosyncracy of style.

Among other methods for multiclass linear separator learn-
ing, we presented the novel technique of “ultraconservative
updating by rows”. Our results suggest the possible prefer-
ence of this new technique for electronic message authorship
attribution. The technique therefore merits further study,
both for authorship attribution and for other applications.
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