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Abstract
A real-life morphological analyzer must be able to handle properly the out-of-vocabulary words. We address the task of guessing the
correct inflectional paradigm of unknown Croatian words. We frame this as a supervised machine learning problem: we train a model
for deciding whether a candidate lemma-paradigm pair is correct based on a number of string- and corpus-based features. Our aim is
to examine the machine learning aspect of the problem: we analyze the features and evaluate the classification accuracy using different
feature subsets. We show that satisfactory level of accuracy (92%) can be achieved with SVM using a combination of string- and
corpus-based features. We discuss a number of possible directions for future research.

Ugibanje pravilne pregibne paradigme za neznane hrvaške besede
Uporaben morfološki analizator mora znati pravilno obravnavati tudi besede, ki jih nima v leksikonu. Prispevek je posvečen ugibanju
pravilne pregibne paradigme za neznane hrvaške besede z uporabo nadzorovanega strojnega učenja. Model se odloči, ali je kandidat
oz. par lema-paradigma, pravilen glede na večje število lastnosti, ki temeljijo na nizih in korpusu. Namen prispevka je, da preuči
razne vidike strojnega učenja tega problema: analiziramo uporabljene lastnosti in ovrednotimo natančnost klasifikacije glede na različne
podmnožice lastnosti. Pokažemo, da lahko zadovoljivo raven natančnosti (92%) dosežemo s SVM in z uporabo kombinacije lastnosti
nizov in korpusa. Obravnavamo tudi več smernic za nadaljnje delo.

1. Introduction
Morphological analysis plays a vital role in many nat-

ural language processing applications, especially for mor-
phologically rich languages such as Croatian. Morphologi-
cal analysis typically relies on some form of a morpholog-
ical lexicon, which lists the stems (or lemmas) and their
associated word-forms. In a word-and-paradigm setting
(Hockett, 1954), the relation between the stem and its word-
forms is defined by an inflectional paradigm (pattern). The
unavoidable problem of lexicon-based morphological anal-
ysis is the limited lexicon coverage. A real-life morpholog-
ical analyzer must be able to deal in a satisfactory manner
with out-of-vocabulary words. In a word-and-paradigm set-
ting, this means being able to guess the correct inflectional
paradigm of an unknown word-form.

In this paper we address the task of guessing the cor-
rect inflectional paradigm of unknown Croatian words. We
frame this as a supervised machine learning problem: we
train a model that decides which paradigm is correct based
on a number of string- and corpus-based features. To
guess the paradigm of an unknown word, we first generate
the candidate lemma-paradigm pairs using a morphology
grammar, and then use the classifier to decide which pair
is correct. This is in contrast to most earlier approaches,
which use hand-crafted scoring functions to decide on the
correct paradigm. The aim of this paper is to examine the
machine learning aspect of the problem: what the relevant
features are and how well can we do on this classification
task. We carry out feature analysis and evaluate the classi-
fication accuracy using different feature subsets. We show
that satisfactory level of accuracy can be achieved with a
combination of string- and corpus-based features.

The rest of the paper is structured as follows. In the next
section we give a brief overview of related work. In Section
3 we define the problem, while in Section 4 we describe the
features used for building the models. In Section 5 we ana-
lyze the features and evaluate the classification accuracy. In
Section 6 we discuss the results and outline directions for
further research. Section 7 concludes the paper.

2. Related Work
Much work on paradigm guessing comes from research

in part-of-speech (POS) tagging and the related task of POS
guessing (Mikheev, 1997; Kupiec, 1992). The problem has
also been addressed in the context of rule-based machine
translation systems (Esplá-Gomis et al., 2011). However,
most work seems to address paradigm guessing in rela-
tion to (semi-)automatic lexicon acquisition (Oliver, 2003;
Tadić and Fulgosi, 2003; Oliver and Tadić, 2004; Clement
et al., 2004; Sagot, 2005; Forsberg et al., 2006; Hana, 2008;
Šnajder et al., 2008; Adolphs, 2008; Kaufmann and Pfister,
2010; Esplá-Gomis et al., 2011). The basic idea is to first
use a lemmatizer to obtain the lemmas and paradigms for
each word-form from corpus. Because of grammar ambi-
guity, this usually results in a number of possible candi-
dates. Thus, the next step is to disambiguate the output of
the morphology grammar by assessing the plausibility of
each lemma-paradigm pair. This is most commonly done
by generating the corresponding word-forms and analyz-
ing their corpus frequencies. An incorrect lemma-paradigm
pair is likely to produce linguistically invalid word-forms
that will not be attested in the corpus, and a suitably de-
signed corpus-based scoring function can be used to de-
cide which paradigm is correct. Some approaches use the



web as additional source of information (Oliver and Tadić,
2004; Cholakov and Van Noord, 2009). Moreover, some
approaches use word-form properties to decide on the cor-
rect paradigm: Forsberg et al. (2006) use hand-crafted con-
straints, while Segalovich (2003) guesses the stems and the
paradigms based on morphological similarity. It is also
possible to use context-based information when analyzing
the word-forms from corpus (Kaufmann and Pfister, 2010).
More recent approaches use machine learning to predict the
stem and the morphosyntactic features (Kaufmann and Pfis-
ter, 2010). In many cases the problem of paradigm guess-
ing is also addressed in an unsupervised setting, in which
paradigms are induced by clustering the word-forms from
corpus and an analysis of their endings (Nakov et al., 2004;
Oliver, 2003; Esplá-Gomis et al., 2011) – an instance of
the more general task of morphology induction (Goldsmith,
2001).

3. Problem Definition
The problem of guessing inflectional paradigms of (un-

known) words can be formulated as follows: given a word-
form w, determine its correct stem s and its correct inflec-
tional paradigm p. The correct paradigm is the one which,
when used with stem s, generates the valid word-forms, in-
cluding word-form w. The stem and the paradigm are tied
together: given w, the inflectional paradigm (possibly am-
biguously) determines the stem of w. Moreover, the stem
and the inflectional paradigm (possibly ambiguously) de-
termine the lemma l. Thus, the problem actually amounts
to determining, for a given word-form, its lemma and the
associated inflectional paradigm. In what follows, we call a
pair (l, p), consisting of lemma l and inflectional paradigm
p, a lemma-paradigm pair, or an LPP for short. We call
an LPP (l, p) correct if (1) the lemma l is valid (it is an
existing word of the language and it is indeed a lemma)
and (2) the paradigm p is the correct paradigm for l; other-
wise we call the LPP incorrect. To difficulty in determining
the correct inflectional paradigm arises from the fact that
for most word-forms there are many candidate LPPs. This
problem is typically approached in two steps: generation
of LPP candidates and selection of LPP candidates. Selec-
tion can be accomplished using scoring or, as we do, using
classification.

3.1. LPP generation
The candidate LPPs of a given word-form are generated

using a morphology grammar (an inflectional morphology
model). Te concrete implementation of the grammar does
not concern us here. We assume that the grammar is gen-
erative (capable of generating word-forms given a lemma)
and reductive (capable of lemmatizing a word-form). We
can abstract this with two functions:

wfs(l, p) 7→ {(w1, t1), (w2, t2), . . . , (wn, tn)} (1)

which, given a LPP, generates a set of word-forms
w1, . . . , wn paired up with the corresponding morpholog-
ical tags t1, . . . , tn, and

lm(w) 7→ {(l1, p1), (l2, p2), . . . , (lm, pm)} (2)

which lemmatizes a word-form to a set of candidate LPPs.
In general, one lemma may be associated with more than
one paradigm, and one paradigm may be associated with
more than one lemma. We also assume that the grammar
can reduce each lemma to its stem.

In this work we use the Croatian higher-order functional
morphology (HOFM) grammar described by Šnajder and
Dalbelo Bašić (2008) and refined by Šnajder (2010). The
current version of the grammar uses 93 paradigms: 48 for
nouns, 13 for adjectives, and 32 for verbs. The morpholog-
ical tags are encoded as MULTEXT-East descriptors (Er-
javec et al., 2003). Following are examples of word-form
generation and lemmatization using the grammar:

> wfs "vojnik" N04
[("vojnik","N-msn"),("vojnika","N-msg"),
("vojnika","N-msa"),("vojnika","N-mpg"),
("vojniku","N-msl"),("vojniče","N-msv"),...]

> lm "vojnika"
[("vojnik",N01),("vojnikin",N03),
("vojnik",N04),("vojniak",N05),
("vojniak",N06),("vojniko",N17),...]

The second example illustrates the ambiguity of the
grammar: many LPPs have been generated (22 in to-
tal), of which only the third one is correct. Despite the
fact that HOFM defines applicability conditions for certain
paradigms, the level of ambiguity is still quite large. On av-
erage, each word-form is lemmatized to 17 candidate LPPs,
among which there are 7 distinct lemmas and 15 distinct
paradigms.

3.2. LPP classification
Given candidate LPPs generated for an unknown word,

we wish to decide which one is correct. In a supervised ma-
chine learning setting, the problem may in principle be cast
as (1) multiclass classification (choosing one LPP among
candidate LPPs), (2) multilabel classification (choosing a
number of LPPs among candidate LPPs), or (3) binary
classification (deciding for each LPP from candidate LPPs
whether it is correct). The problem with (1) is that it does
not account for homographs (the cases in which a single
word-form has more than one correct LPP). The problem
with (2) is that it is difficult to define the possible classes
(they should encode both the stem transformation and the
paradigm). Moreover, both (1) and (2) are difficult to com-
bine with the output of a morphology grammar. Approach
(3) is the most straightforward and we shall follow it here.

For classification, we use the SVM with an RBF ker-
nel. The SVM algorithm tends to outperform other machine
learning algorithms on a variety of learning problems. The
RBF kernel implicitly defines an infinite-dimensional fea-
ture space, and is thus a good choice for problems for which
the number of examples is much larger than the number of
features, which will be the case here.

As source of training data, we use the semi-auto-
matically acquired inflectional lexicon from (Šnajder et al.,
2008). The lexicon contains 68,465 manually verified LPPs
for Croatian nouns, adjectives, and verbs. We will use a
fraction of this data for training and testing. It should be



noted that the distribution of LPPs in the lexicon with re-
spect to the paradigms is very uneven; the ten least frequent
paradigms appear only 40 times in the lexicon, whereas the
ten most frequent paradigms appear over 50,000 times.

4. Features
Given an LPP, we compute a set of features based on

which the LPP can be classified as either correct or in-
correct. We distinguish between two groups of features:
string-based and corpus-based.

4.1. String-based features
The string-based features are based on the orthographic

properties of the lemma or the stem. The intuition behind
this is that incorrect LPPs tend to generate ill-formed (or
somewhat odd-formed) stems and lemmas. For example,
there is no adjective in Croatian language that ends in -kč;
an LPP that would generate such a stem could be discarded
immediately. In fact, many paradigms defined in traditional
grammar books are conditioned on the stem ending, requir-
ing that it belongs to a certain group of phonemes or that
it forms a consonant group. Similarly, there are paradigms
that are applicable only to one-syllable stems. We use the
following string-based features:

1. EndsIn – the ending character of the stem;

2. EndsInCgr – a binary feature indicating whether the
word-forms ends in a consonant group (two consecu-
tive consonants);

3. EndsInCons – a binary feature indicating whether the
word-form ends in a consonant;

4. EndsInNonPals – a binary feature indicating whether
the word-form ends in a non-palatal (v, r, l, m, n, p, b,
f, t, d, s, z, c, k, g, or h);

5. EndsInPals – a binary feature indicating whether the
word-form ends in a palatal (lj, nj, ć, d, č, dž, š, ž, or
j);

6. EndsInVelars – a binary feature indicating whether the
word-form ends in a velar (k, g, or h);

7. LemmaSuffixProb – the probability P (sl|p) of lemma
l having a three-letter suffix sl given inflectional
paradigm p;

8. StemSuffixProb – the probability P (ss|p) of stem
s having a three-letter suffix ss given inflectional
paradigm p;

9. StemLength – the number of characters in the stem;

10. NumSyllables – the number of syllables in the stem
(determined heuristically);

11. OneSyllable – a binary feature indicating whether
NumSyllables equals 1.

4.2. Corpus-based features
The corpus-based features are calculated based on the

frequencies of word-forms attested in the corpus. The gen-
eral idea is that a correct LPP should have more of its word-
forms attested in the corpus than an incorrect LPP. Instead
of only looking at total counts of attested word-forms, one
can also look at the distributions of attested word-forms
across the morphological tags. The intuition behind this
is that every inflectional paradigm has its own distribution
of morphological tags, and that a correct LPP will generate
word-forms that obey such a distribution. For instance, in
case of a noun paradigm, we can expect a genitive word-
form to be far more frequent than a vocative word-form.
Hence, an LPP that generates more vocative word-forms
than genitive word-forms is unlikely to be correct.

In what follows, we use #(w,C) to denote the number
of occurrences of word-form w in corpus C. Set T (p) de-
notes the set of morphological tags of inflectional paradigm
p. Let P (t|p) denote the probability distribution of mor-
phological tag t conditioned on the inflectional paradigm
p, and let P (t|l, p) denote the probability of morphological
tag t generated by LPP (l, p). We obtain these distributions
as maximum likelihood estimates using the LPPs from the
inflectional lexicon L and word-form frequencies from cor-
pus C:

P (t|p) =

∑
(l,p′)∈L;p′=p;(w,t′)∈wfs(l,p);t′=t #(w,C)∑

(l,p′)∈L;p′=p;w∈wfs′(l,p) #(w,C)

P (t|l, p) =

∑
(w,t′)∈wfs(l,p);t′=t #(w,C)∑

w∈wfs′(l,p) #(w,C)

where wfs ′ is a simpler version of the wfs function that only
returns the word-forms. Notice that, because we do not per-
form POS tagging of the corpus, we count the ambiguous
word-forms (inner and outer homographs) multiple times.
We use the following corpus-based features:

1. LemmaAttested – a binary feature indicating whether
the lemma is attested in the corpus, i.e., #(l, C) > 0;

2. Score0 – the number of corpus-attested word-form
types generated by the LPP:

score0(l, p) = |wfs ′(l, p) ∩ C|

3. Score1 – the sum of corpus frequencies of word-forms
generated by the LPP:

score1(l, p) =
∑

w∈wfs′(l,p)

#(w,C)

4. Score2 – the proportion of corpus-attested word-form
types generated by the LPP:

score2(l, p) =
|wfs ′(l, p) ∩ C|
|wfs ′(l, p)|

5. Score3 – the product of paradigm-conditioned distri-
bution of morphological tags and the distribution of
tags generated by the LPP:

score3(l, p) =
∑

t∈T (p)

P (t|p)× P (t|l, p)



6. Score4 – the expected number of corpus-attested
word-form types generated by the LPP:

score4(l, p) =
∑

t∈T (p)

P (t|p)×min
(
1,#(w,C)

)
7. Score5 – the Kullback-Leibler divergence between the

paradigm-conditioned distribution of morphological
tags, p1(t) = P (t|p), and the distribution of tags gen-
erated by the LPP, p2(t) = P (t|l, p):

score5(l, p) = KL(p1||p2)

8. Score6 – the Jensen-Shannon divergence between the
aforementioned distributions:

score6(l, p) = KL(p1||p2) + KL(p2||p1)

9. Score7 – the cosine similarity between the aforemen-
tioned distributions:

score7(l, p) =

∑
t∈T (p) p1(t)× p2(t)√∑

t∈T (p) p1(t)
2 ×

∑
t∈T (p) p2(t)

2

We computed the above features on the Vjesnik news-
paper corpus totaling 23 million word-form tokens and
330,298 word-form types (the same corpus was that used
for lexicon acquisition in (Šnajder et al., 2008)).

4.3. Other features
Besides the string- and corpus-based features, we also

use the following two features:

1. ParadigmId – a nominal feature denoting the LPP’s
inflectional paradigm;

2. POS – the part-of-speech of the LPP’s inflectional
paradigm (noun, adjective, or verb).

5. Evaluation
The purpose of evaluation is twofold: apart from de-

termining how accurately we can guess the inflectional
paradigms, we also wish to analyze what features are most
useful for this task.

5.1. Data set
We compiled the data set for training and testing from

the aforementioned inflectional lexicon (Šnajder et al.,
2008). We sampled from the lexicon 5,000 LPPs for train-
ing and 5,000 LPPs for testing. Because the distribution
of paradigms is very uneven, we used stratified sampling
with respect to the inflectional paradigms. Moreover, we
ensured that there is no LPP that appears in the test set, but
does not appear in the training set (otherwise the probabil-
ity distributions would be undefined). To generate the neg-
ative training and testing examples, we proceeded as fol-
lows. For each LPP, we generate all word-forms using the
function wfs . Then, for all corpus-attested obtained word-
forms, we generate the candidate LPPs using the function
lm , and filter out those LPPs that exist in the lexicon. This

generates a large number of incorrect LPPs, from which we
again sample 5,000 for training and 5,000 for testing. Thus
we end up with 10,000 LPPs (5,000 correct and 5,000 incor-
rect) in each the training and the test set. Given the number
of classes and features (a total of 146 binary-encoded fea-
tures), the amount of training data ought to be sufficient; a
larger training set would unnecessary increase the time re-
quired for training. Notice that the training set contains cor-
rect and some incorrect LPPs for each selected word-form,
while the test set contains LPPs obtained from word-forms
that did not appear in the training set.

5.2. Feature analysis
Some of the features we defined are redundant or per-

haps irrelevant for LPP classification. Because in absolute
terms the number of features is not large, we need not per-
form feature analysis in order to reduce this number. In-
stead, the purpose of our feature analysis is to gain insight
into what features are useful for paradigm guessing.

For feature analysis we used the open source tool Weka
(Hall et al., 2009). Table 1 summarizes the results. We used
three univariate filtering methods: information gain (IG),
gain ratio (GR), and RELIEF method (Kononenko, 1994).
We lists feature rankings obtained on the training set, with
first five ranks shown in bold. The first two methods pro-
duced similar rankings: among string-based features, suffix
probabilities are ranked the highest, while among corpus-
based features, feature Score5 is often ranked high, while
ranks of other features vary. There are a number of features
that are low-ranked (rank > 10) by each of the three meth-
ods: the five EndsIn* features, NumSyllables, OneSyllable,
StemLength, Score1, Score3, and POS.

The univariate methods do not measure the dependen-
cies between the features, thus they cannot detect feature
redundancy. We therefore also analyzed the features using
two multivariate feature subset selection (FSS) methods:
correlation-based feature selection (CFS) (Hall, 1998) and
consistency subset selection (CSS) (Liu and R., 1996), both
with greedy forward search as the optimization method. Ta-
ble 1 shows the optimal subset selection obtained with each
of these methods. Notice that both selected subsets contain
both string- and corpus-based features.

5.3. Classification accuracy
For training and testing of models, we used the LIB-

SVM implementation of the SVM algorithm (Chang and
Lin, 2011). We trained eight models using different fea-
ture subsets. We optimized the parameters of each model
separately using 5-fold cross-validation on the training set.
Classification accuracy on the test set is shown in Table 2.
The reliability of probability estimates used for some of
the corpus-based features depends on the frequencies of
word-forms in the corpus. In a realistic setting, the un-
known words tend to be less frequent in corpus. The last
two columns of Table 2 show the classification accuracy for
LPPs for which the frequency of word-forms in the corpus
is less than or equal to 100 (rare words, accounting for 66%
of the test set) and less than or equal to 10 (very rare words,
accounting for 22% of the test set). The performance base-
line is the majority class in each test set.



Table 1: Feature selection analysis

Ranking FSS

Feature IG GR RELIEF CFS CSS

String-based features:
EndsIn 12 13 2 ×
EndsInCgr 21 21 11 ×
EndsInCons 17 15 20
EndsInNonpals 22 22 19
EndsInPals 19 18 21
EndsInVelars 20 19 18
LemmaSuffixProb 2 2 3 ×
NumSyllables 14 14 12 ×
OneSyllable 16 17 17 ×
StemLength 15 16 15 ×
StemSuffixProb 1 1 6 × ×

Corpus-based features:
LemmaAttested 11 3 8 ×
Score0 8 4 16 ×
Score1 13 12 22 ×
Score2 6 8 5 ×
Score3 10 11 13 ×
Score4 9 10 14
Score5 4 5 4
Score6 3 6 9 ×
Score7 5 7 7 ×

Other features:
ParadigmId 7 9 1 ×
POS 18 20 10

As expected, the maximum accuracy of about 92% was
achieved when using all features. Interestingly, in this case
the classification accuracy does not decrease much on rare
or very rare word-forms. Using only string- or corpus-
based features gives worse performance than when using
both kinds of features. Moreover, as expected, using only
corpus-based features decreases the performance on rare
words. As regards the models with feature selected sub-
sets, all perform above the baseline except the one obtained
with CSS. The RELIEF method seems to have selected a
very good subset of features; a model with only five fea-
tures (ParadigmID, EndsIn, LemmaSuffixProb, Score5, and
Score2) performs just slightly worse than the model using
the full set of 22 features.

6. Discussion
As the work described in this paper is preliminary, there

are a number of issues that should be pointed out, especially
as regards the evaluation.

Considering that on average there are 17 candidate LPPs
per word-form, accuracy of 92% means that for each un-
known word we would on average wrongly classify at least
one candidate LPP. However, the problem with the above
evaluation is that the test set is balanced in the number of
positive and negative examples. In reality, there are more
negative examples (incorrect LPPs) than positive examples,

Table 2: Classification accuracy (%)

Word-forms attested

Features (count) ≥ 1 ≤ 100 ≤ 10

All (22) 91.97 91.94 90.65
String-based (13) 87.01 87.69 87.98
Corpus-based (11) 87.78 86.59 82.04
IG (5) 81.14 79.05 76.46
GR (5) 59.76 80.90 77.29
RELIEF (5) 90.62 90.60 89.27
CFS (3) 81.69 79.51 78.67
CSS (13) 27.41 91.56 90.37
Baseline 50.00 56.51 69.92

of which many can probably be classified as such with high
confidence. For future work, we need to evaluate the clas-
sifier in terms of precision and recall on a per word basis.

In this work we ignored the classifier confidence scores,
which may be used to produce rankings. Paradigm guess-
ing is often addressed as a ranking task, and it would make
sense to evaluate it as such. It would also be possible to
build a metaclassifier that uses the confidence scores as-
signed to candidate LPPs to decide which LPP to choose.
Moreover, ranking-based classification enables the interac-
tive use of a paradigm guesser, which is very convenient for
semi-automatic lexicon enlargement.

Another issue that we did not address is the size and
diversity of the training set. Often a large morphological
lexicon is not available, and one wishes to use paradigm
guessing to acquire such a lexicon. Related to this is the
question of how many examples per paradigm we need to
learn a good classifier. The active learning framework pro-
vides a way to minimize the number of training examples
and hence reduce the manual labeling efforts. Active learn-
ing may also be combined with ranking-based classification
to speed up the annotation process.

Furthermore, there are three additional evaluation sce-
narios that may be considered. First is the evaluation in
the context of rule-based tagging (e.g., constraint gram-
mar based tagging, as described by Peradin and Šnajder
(2012)), in which the goal is to disambiguate ambiguous
morphosyntactic tags, rather than ambiguous paradigms
(the former is probably an easier task in most cases). Re-
lated to this is a setting in which corpus-based informa-
tion is not available (e.g., on-the-fly tagging), and one must
choose the correct paradigm using only string-based and
possibly context-based features. Yet another interesting
evaluation scenario is the acquisition of inflectional lexi-
cons from a list of lemmas, which is obviously an easier
task than the one we addressed here because the level of
grammar ambiguity is lower.

7. Conclusion
We have addressed the problem of paradigm guessing

for unknown Croatian words as a binary classification task
over the output of a morphology grammar. We defined a



number of string- and corpus-based features and trained
different models on selected subsets of these features. The
highest accuracy (about 92%) was achieved using the com-
plete set of 22 features. Just slightly worse performance
can be obtained with a subset of only five features (a com-
bination of string- and corpus-based features). Degradation
in classification performance on rare words is minimal.

We have outlined several directions for further research.
We plan to evaluate paradigm guessing as a ranking task on
a per word basis, in the context of semi-automatic lexicon
acquisition. We also intend to apply paradigm guessing for
rule-based POS tagging of Croatian. From a machine learn-
ing perspective, we intend to experiment with additional
features (including context-based features).
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