
A Web Service Implementation of Linguistic Annotation for Slovene and English

Senja Pollak1,2, Nejc Trdin1,3, Anže Vavpetič1,3 and Tomaž Erjavec1,3
1Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

2Faculty of Arts, Aškerčeva 2, 1000 Ljubljana
3International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia

{senja.pollak, nejc.trdin, anze.vavpetic, tomaz.erjavec}@ijs.si

Abstract
This paper presents a web service for automatic linguistic annotation of Slovene and English texts. The texts are tokenised,
morphosyntactically tagged and lemmatised by the ToTrTaLe annotation tool, while the web service for this annotation is made
available in the Orange4WS and the ClowdFlows workflow construction environments. The workflows enable the users to apply the
annotation tool as an elementary constituent for other natural language processing workflows. The user can upload the text(s) in
different formats (TXT, DOC, DOCX, PDF, ZIP), convert them to plain text and annotate them with ToTrTaLe. The paper also
proposes several improvements of the ToTrTaLe tool based on the identification of various types of errors of the existing
implementation, and implements these improvements as a post-processing step in the workflow.

Implementacija spletnega servisa za jezikoslovno označevanje slovenskega in angleškega jezika
Prispevek predstavi implementacijo spletnega servisa za jezikoslovno označevanje slovenskega in angleškega jezika. Program
ToTrTaLe je kot spletni servis uporabnikom na voljo v okoljih za izgradnjo delotokov Orange4WS in ClowdFlows in omogoča
tokenizacijo, oblikoskladenjsko označevanje in lematizacijo besedil. Delotoki omogočajo uporabniku, da uporabi jezikoslovno
označevanje kot elementarni gradnik pri večjih delotokih za analizo besedil. Uporabnik lahko naloži besedila v različnih formatih
(TXT, DOC, DOCX, PDF, ZIP), jih pretvori v navadno besedilo in jih označi s ToTrTaLe. Prispevek tudi predlaga več izboljšav za
ToTrTaLe, ki temeljijo na identifikaciji različnih vrst napak obstoječe implementacije, in jih implementira kot dodaten korak delotoka.

1. Introduction
In corpus linguistics, part-of-speech tagging (PoS
tagging), also called word-level grammatical tagging, is
the process of marking up word tokens in a text (corpus)
as corresponding to a particular part of speech, based on
the lexicon giving the possible PoS tags of the word and
the context in which the word appears. PoS-tagging
algorithms fall into two groups: rule-based taggers and
statistical taggers where the PoS tags are learned from a
manually annotated text corpus. For languages with rich
inflection, such as Slovene, it is better to speak of
morphosyntactic annotations or descriptions (MSDs)
rather than PoS tags, as such MSDs contain much more
information than do PoS tags. For example, the PoS
tagsets for English have typically from 20 – 60 different
tags, while Slovene has over 1,000 MSDs.

This paper focuses on a particular tool for automatic
morphosyntactic tagging, named ToTrTaLe (Erjavec et
al., 2011). A brief description of ToTrTaLe is presented in
Section 2. As one of the main contributions of this work is
the implementation of ToTrTaLe as a web service which
can be used as an ingredient of complex NLP workflows,
we first motivate this work in Section 3 by a short
introduction to web services, workflows and by presenting
two specific workflow construction environments
Orange4WS and ClowdFlows. The main contributions of
this research are presented in Sections 4 and 5. Section 4
presents the implementation of the ToTrTaLe analyser as
a web service in two service-oriented workflow
construction and management platforms Orange4WS and
ClowdFlows. Section 5 presents the proposed
improvements of the ToTrTaLe tool based on the
identification of several types of errors of the existing
implementation. These error corrections are implemented
as a part of our web-service.

2. The ToTrTaLe annotation tool
ToTaLe (Erjavec et al., 2005) is short for Tokenisation,
Tagging and Lemmatisation and is the name of a script
implementing a pipeline architecture comprising these
three processing steps. While the tool makes some
language specific assumption, they are rather broad, such
as that text tokens are (typically) separated by space;
otherwise, the tool itself is language independent and
relies on external language resources. The tool is written
in Perl and is reasonably fast. The greatest speed
bottleneck is the tool start-up, mostly the result of the
lemmatisation module, which for Slovene contains
thousands of rules and exceptions.

In the context of the JOS project (Erjavec et al., 2010)
the tool was re-trained for Slovene and made available as
a Web application at http://nl.ijs.si/jos/analyse/. It allows
pasting the text to be annotated into the form or uploading
a plain-text UTF-8 file and either have the annotated text
displayed or downloaded as a ZIP file.

The tool (although not the Web application) has been
recently extended with another module, Transcription, and
the new edition is called ToTrTaLe (Erjavec, 2011). The
transcription step is used for modernising historical
language (or, in fact, any non-standard language), and the
tool was used as the first step in the annotation of a
reference corpus of historical Slovene (Erjavec, 2012a).
And additional extension of ToTrTaLe is the ability to
process heavily annotated XML document conformant to
the Text Encoding Initiative Guidelines (TEI, 2007).

The Web service presented in this paper uses
To(Tr)TaLe with models for Slovene and English, but as
the historical language models are not as mature as those
for contemporary language, this extra functionality is not
discussed here further. In the rest of this section we
present the main modules of To(Tr)TaLe and also their
models for Slovene and English.

2.1. The tokenisation module
The multilingual tokenisation module mlToken1 is written
in Perl and in addition to splitting the input string into
tokens, it also assigns to each token its token type, e.g.
XML tag, sentence final punctuation, digit, abbreviation,
URL, etc. and preserves (subject to a flag) white-space, so
that the input can be reconstituted from the output.

The tokeniser can be fine-tuned by putting punctuation
into various classes (e.g. word-breaking vs. non-breaking)
and also uses several language-dependent resource files: a
list of abbreviations (“words” ending in period, which is a
part of the token and does not necessarily end a sentence);
a list of multi-word units (tokens consisting of several
space-separated “words”); and a list of (right or left)
clitics, i.e. cases where one “word” should be treated as
several tokens. Such resource files allow for various
options to be expressed, although not all, as will be
discussed in section 5.

The tokenisation resources for Slovene and English
were developed by hand, and cover most typical
exceptions in both languages.

2.2. Tagging
For tagging words in the text with their context
disambiguated PoS tags (or, better, morphosyntactic
annotations) we use TnT (Brants, 2000), a fast and robust
tri-gram tagger.

For Slovene, the tagger has been trained on jos1M, the
1 million word JOS corpus of contemporary Slovene
(Erjavec et al., 2010), and is also given a large background
lexicon extracted from the 600 million word FidaPLUS
reference corpus of contemporary Slovene (Arhar Holdt
and Gorjanc, 2007). The English model was trained on the
MULTEXT-East corpus (Erjavec, 2012b), namely the
novel “1984”. This is of course a very small corpus, so the
resulting model is not very good. However, it does have
the advantage of using the MULTEXT-East tagset, which
is compatible with the JOS one.

2.3. Lemmatisation
For lemmatisation To(Tr)TaLe uses CLOG (Erjavec and
Džeroski, 2004), which implements a machine learning
approach to the automatic lemmatisation of (unknown)
words. CLOG learns on the basis of input examples (pairs
word-form/lemma, where each morphosyntactic tag is
learnt separately) a first-order decision list, essentially a
sequence of if-then-else clauses, where the defined
operation is string concatenation. The learnt structures are
Prolog programs but in order to minimise interface issues
we made a converter from the Prolog program into one in
Perl.

The Slovene lemmatiser was trained on a lexicon
extracted from the jos1M corpus, and the lemmatisation of
contemporary language is reasonably accurate, with 92%
on unknown words. However the learnt model, given that
there are 2,000 separate classes, is quite large: the Perl
rules have about 2MB, which makes loading the
lemmatiser slow.

The English model was trained on the English
MULTEXT-East corpus, which has about 15,000 lemmas

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 mlToken was written in 2005 by Camelia Ignat, then working
at the EU Joint Research Centre in Ispra, Italy.	

and produces a reasonably good model, especially as
English is fairly simple to lemmatise.

3. Web services and workflows
A Web service is a method of communication between
two electronic devices over the web. The W3C defines a
Web service as “a software system designed to support
interoperable machine-to-machine interaction over a
network”. A Web service’s functionalities are described in
a machine-processable format i.e., the Web Services
Description Language, known by the acronym WSDL.
Other systems interact with the Web service in a manner
prescribed by its description using SOAP XML messages,
typically conveyed using HTTP in conjunction with other
Web-related standards. The W3C also states that we can
identify two major classes of Web services, REST-
compliant Web services, in which the primary purpose of
the service is to manipulate XML representations of Web
resources using a uniform set of "stateless" operations,
and arbitrary Web services in which the service may
expose an arbitrary set of operations.

3.1. Workflow construction platforms
Main data mining environments that allow for workflow
composition and execution, implementing the visual
programming paradigm, include Weka (Witten et al.,
2011), Orange (Demšar et al., 2004), KNIME (Berthold et
al., 2007) and RapidMiner (Mierswa et al., 2006). The
most important common feature is the implementation of
a workflow canvas where workflows can be constructed
using simple drag, drop and connect operations on the
available components, implemented as graphical units
named widgets. This feature makes the platforms suitable
for use also by non-experts due to the representation of
complex procedures as relatively simple sequences of
elementary processing steps (workflow components
implemented as widgets).

In this work, we use two recently developed service-
oriented environments for data mining workflow
construction and execution: Orange4WS and
ClowdFlows.

The first platform Orange4WS (Podpečan et al., 2012)
is distinguished from other main data mining platforms by
its capacity of including web services into data mining
workflows, allowing for distributed processing. Such a
service-oriented architecture has already been employed
in Taverna (Hull et al., 2006), a popular platform for
biological workflow composition and execution. Using
processing components implemented as web services
enables remote execution, parallelisation, and high
availability by default. A service-oriented architecture
supports not only distributed processing but also
distributed development.

The second platform ClowdFlows (Kranjc et al., 2012)
is distinguished from other main data mining platforms by
its capacity of workflow sharing. Sharing of workflows
has previously been implemented through the
myExperiment website of Taverna (Hull et al., 2006). This
website allows the users to publicly upload their
workflows so that they are made available to a wider
audience. Furthermore, publishing a link to a certain
workflow in a research paper allows for simpler
dissemination of scientific results. However, the users
who wish to view or execute these workflows are still

required to install the specific software in which the
workflows were designed and implemented. On the other
hand, the ClowdFlows platform implements the described
features also with one major advantage. ClowdFlows
requires no installation and can be run on any device with
an internet connection, using any modern web browser.
The ClowdFlows platform is described in more detail
below.

3.2. The ClowdFlows platform
ClowdFlows is implemented as a cloud-based application
that takes the processing load from the client's machine
and moves it to remote servers where experiments can be
run with or without user supervision. The user does not
need to perform any specific installation. ClowdFlows
consists of the workflow editor (the graphical user
interface, as shown in Figure 1) and the server-side
application which handles the execution of the workflows
and hosts a number of publicly available workflows.

The workflow editor consists of a workflow canvas
and a widget repository, where widgets represent
embedded chunks of software code. The widgets are
separated into categories for easier browsing and selection
and the repository includes a wide range of readily
available widgets. Our NLP processing modules have also
been implemented as such widgets.

By using ClowdFlows we were able to make our NLP
workflow public, so that anyone can use and execute it.
The workflow is exposed by a unique URL, which can be
accessed from any modern Web browser. Whenever the

user opens a public workflow, a copy of this workflow
appears in her private workflow repository. The user can
execute the workflow and view its results or expand it by
adding or removing widgets. Any user can therefore use
ToTrTaLe as a pre-processing step in any other NLP
workflow.

4. ToTrTaLe web service implementation
In this section we present the services we implemented
and also some details regarding the implementations. All
services were implemented in the Python programming
language, using Orange4WS API and additional freeware
software packages. Services are currently adapted to run
on Unix-like operation systems, but are easily transferable
to other operation systems.

4.1. Implemented web services
We implemented two web services, which constitute the
main implementation part of this work. The first service
converts the files to plain text. The second service uses
ToTrTaLe to annotate the texts.

4.1.1. Converting input data
The first service parses the input data and converts it into
plain text. The input corpus can be uploaded in various
formats, either as a single file or as several files
compressed in a ZIP file. The supported formats are PDF,
DOC, DOCX, TXT and HTML, the latter passed to the
service in the form of an URL.

Figure 1. A screenshot of the ClowdFlows workflow editor in the Google Chrome browser and
the ToTrTaLe workflow, available at http://clowdflows.org/workflow/228/.

Based on the file type, the program chooses the correct
converter:
• If the document is an HTML document, its URL is

written in the document variable and the document is
assumed to contain only plain text. The web service
then downloads the document via the given URL in
plain text.

• DOCX Microsoft Word documents are essentially
compressed ZIP files containing the parts of the
document in XML.

• DOC Microsoft Word files are converted using an
external tool, wvText (Lachowicz et al., 2006), which
transforms the file into plain text.

• PDF files are converted with the Python pdfminer
library (Shinyama, 2010).

• If the file name ends with TXT, then the file is
assumed to be already in plain UTF-8 text.

• ZIP files are extracted into a flat directory and
converted to a file with XML elements containing the
plain-text of the individual files.

The resulting text representation is then sent through
several regular expression filters, in order to further
normalize the text. For instance, white space is
normalised.

The final step involves sending the data. At each step
of the web service process, errors are accumulated in the
error output variable.

4.1.2. ToTrTaLe web service
The second web-service implements the ToTrTaLe
annotation tool and also supports post-processing which
corrects some systematic errors, which are further
described in Section 5. The parameters of this web service
are: the document, the language of the text (English,
Slovene or historical Slovene), if we want post-
processing, and if we want the output in XML format or
as plain text.

The local ToTrTaLe service is then run, the output is
written into the output variable, and the possible errors are
passed to the error variable. Additionally, the input
parameter for post-processing defines if the post–
processing scripts are run on the text. The post-processing
scripts are Perl implementations of corrections for tagging
mistakes described in Section 5.

Finally, the output string variable is passed on to the
output of the web service.

4.2. Implemented widgets
Apart from the web services we also needed to adapt some
platform specific widgets to successfully use the web
services. These widgets, not exposed as web services, are
run locally; in the case of Orange4WS they are executed
on the user’s machine, whereas in the case of ClowdFlows
they are executed on the server hosting the ClowdFlows
application.

Orange4WS and ClowdFlows can automatically
construct widgets for web services. They identify the
inputs and the outputs of the web service from the
service’s WSDL description. Nevertheless, an additional
functionality was required to adequately support the user
in using the web services. Both in Orange4WS as well as
in ClowdFlows, we implemented a widget called “Load
Corpus” that opens a corpus in one of the formats
supported by the web service for parsing input data, as
well as internally calls the web service for converting
input data.

4.3. Example workflow
The widgets implementing the existing software
components are shown in Figure 1 and Figure 2. Figures
show that the implementation of web-services is platform-
independent.

Figure 2. A screenshot of the Orange4WS window with the ToTrTaLe worflow.

In both figures the same workflow is represented.

Figure 1 shows the workflow in the ClowdFlows platform
and Figure 2 shows the workflow in the Orange4WS
platform.

On the left side of both figures, there is a widget
repository, and the right side is intended for the
construction of workflows – the canvas. Apart from our
web service widgets, there are some general-purpose
widgets (e.g., file reading, file writing, construction of
strings). The purpose of both workflows is essentially the
same: they accept a file and read the file. Then the file is
parsed from its original form into the plain text
representation of the file. After the parsing of the file, the
plain text representation is input into the ToTrTaLe web
service. The service returns the annotated file in the plain
text representation according to other input parameters.
The final file can be viewed in the right most widget
(String to file) of the corresponding workflow.

There is also a minor difference in the workflows
presented in Figures 1 and 2. The difference is that the
Orange4WS workflow has more widgets than the
ClowdFlows workflow. This is due to the fact that widgets
for Orange4WS were implemented to accept input data
from other widgets (String widget, Boolean widget, etc.),
whereas the widgets for ClowdFlows were implemented
to accept inputs directly as parameters (by double clicking
on the widget).

The sample output produced by either of the two
workflows is shown in Figure 3. The figure clearly shows
the function of each token, the sentence splitter tags and
also morphosyntactic annotation of each token. The final
output is in the form of plain text, where the input to the
workflow was a Slovene PDF file.

Figure 3. A sample output from the ToTrTaLe web-
service, annotating sentences and tokens, with lemmas and
MSD corpus tags on words.

5. Analysis of tagging mistakes
In this section we present the observed ToTrTaLe
mistakes, mainly focusing on Slovene. The corpus used
for analysis contains the papers of the Proceedings of the
past seven Language Technology conferences. The
construction of the corpus is described in Smailović and
Pollak (2011).

The majority of the described mistakes are currently
handled in an optional post-processing step, but can be
taken into consideration in future versions of ToTrTaLe,
by improving tokenisation rules or changing the tokeniser,
re-training the tagger with larger and better corpora and
lexica, and improving the lemmatisation models or
learner.

5.1. Incorrect sentence segmentation
Errors in sentence segmentation originate mostly from the
processing of abbreviations. Since the analysed examples
were taken from academic texts, specific abbreviations,
leading to incorrect separation of sentences, are frequent.
The abbreviations that should be added to the abbreviation
list for ToTrTaLe are e.g. “et al.”, “in sod.”, “cca.”. On
the other hand there are abbreviations after which
ToTrTaLe should end the sentence, but doesn’t. Checking
if there is an upper case letter following the abbreviation
would, in most cases, solve this mistake. Examples
include the measures “KB”, “MB”, “GB”, and “ipd.”,
“itd.”, “etc.”.

5.2. Incorrect morphosyntactic annotations
The tagging also at times makes mistakes, and in some
cases these mistakes occur systematically. One example is
in subject complement structures. For instance “Kot
podatkovne strukture so semantične mreže usmerjeni
grafi.” [As data structures semantic networks are directed
graphs.] the nominative plural feminine “semantične
mreže” [semantic networks] is wrongly annotated as
singular genitive feminine. Another frequent type of
mistake, easy to correct, is unrecognized
gender/number/case agreement between adjective and
noun in noun phrases. For example, “Na eni strani imamo
semantične leksikone …” [On the one hand we have the
semantic lexicons...], “semantične” [semantic] is assigned
a feminine plural nominative MSD, while “leksikone”
[lexicons] is attributed a masculine plural accusative tag.
Next, in several examples, “sta” (second person, dual
form of verb “to be”) is tagged as a noun. Even if “STA”
can be used as an abbreviation (when written with capital
letters), it is much more frequent as the word-form of the
auxiliary verb.

5.3. Incorrect lemmatisation
Besides the most common error of wrong lemmatisation
of individual words (e.g. “hipernimija” being lemmatised
as “hipernimi” [hypernyms] and not as “hipernimija”
[hypernymy]), there are systematic errors when
lemmatising Slovene adjectives in comparative and
superlative form, where the base form is not chosen as a
lemma. Last but not least, there are typographic mistakes
in the original text and of end-of-line split words.

6. Conclusions and further work
In this paper we presented the ToTrTaLe web service and
demonstrated how it can be used in workflows in two
service-oriented data mining platforms – Orange4WS and
ClowdFlows. Together with the ToTrTaLe web service,
we developed a series of widgets (workflow components)
for pre-processing the text, consisting of reading the text
corpus files in various formats, tokenising the text,
lemmatising and morphosyntactically annotating it, as
well as adding the sentence boundaries, followed by a
post-processing widget for error correction.

Before starting this work, the To(Tr)TaLe tool has
already existed as a web application for Slovene, where
the user was able to upload and add the text, but the
novelty is that a web service implementation now enables
the user to use ToTrTaLe as a part for various other NLP
applications. The presented web service has already been
incorporated in the term and definition extraction
workflow2 (Pollak et al. 2012).

Acknowledgements
We are grateful to Vid Podpečan and Janez Kranjc for
their support and for enabling us to include the developed
widgets into Orange4WS and ClowdFlows, respectively.
This work was partially supported by the Slovene
Research Agency and the FP7 European Commission
projects “Machine understanding for interactive
storytelling” (MUSE, grant agreement no: 296703) and
“Large scale information extraction and integration
infrastructure for supporting financial decision making”
(FIRST, grant agreement 257928).

References
Špela Arhar Holdt and Vojko Gorjanc (2007). Korpus

FidaPLUS: nova generacija slovenskega referenčnega
korpusa. Jezik in slovstvo, 52(2): 95–110.

Michael R. Berthold, Nicolas Cebron, Fabian Dill,
Thomas R. Gabriel, Tobias Kötter, Thorsten Meinl,
Peter Ohl, Kilian Thiel and Bernd Wiswedel (2007).
KNIME: The Konstanz Information Miner. In Preisach,
C., Burkhardt, H., Schmidt-Thieme, L., Decker, R.,
(eds.): GfKl. Studies in Classification, Data Analysis,
and Knowledge Organization, Springer, pp. 319–326.

Thorsten Brants (2000). TnT – A Statistical Part-of-
Speech Tagger. In Proceedings of the 6h Applied
Natural Language Processing Conference (ANLP
2000), Seattle, WA, pp. 224–231.

Janez Demšar, Blaž Zupan, Gregor Leban and Tomaž
Curk (2004). Orange: From experimental machine
learning to interactive data mining. In Boulicaut, J.F.,
Esposito, F., Giannotti, F., Pedreschi, D. (eds.):
Proceedings of ECML/PKDD-2004. Springer LNCS
Volume 3202, pp. 537–539.

Tomaž Erjavec (2011). Automatic linguistic annotation of
historical language: ToTrTaLe and XIX century
Slovene. In Proceedings of the 5th ACL-HLT Workshop
on Language Technology for Cultural Heritage, Social
Sciences, and Humanities, ACL.

Tomaž Erjavec (2012a). The goo300k corpus of historical
Slovene. In Proceedings of the 8th conference on
Language Resources and Evaluation (LREC’12),

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 http://clowdflows.org/workflow/76/	

Istambul. European Language Resources Association
(ELRA).

Tomaž Erjavec (2012b). MULTEXT-East:
morphosyntactic resources for Central and Eastern
European languages. Language resources and
evaluation, 46(1): 131–142.

Tomaž Erjavec and Sašo Džeroski (2004). Machine
Learning of Language Structure: Lemmatising
Unknown Slovene Words. Applied Artificial
Intelligence, 18(1):17–41.

Tomaž Erjavec, Darja Fišer, Simon Krek and Nina
Ledinek (2010). The JOS linguistically tagged corpus
of Slovene. In Proceedings of the 7th International
Conference on Language Resources and Evaluations,
LREC 2010, Valletta, Malta, pp. 1806-1809.

Tomaž Erjavec, Camelia Ignat, Bruno Pouliquen and Ralf
Steinberger (2005). Massive Multi-Lingual Corpus
Compilation: Acquis Communautaire and ToTaLe. In
Proceedings of the 2nd Language & Technology
Conference, April 21-23, 2005, Poznan, Poland, pp. 32–
36.

Duncan Hull, Katy Wolstencroft, Robert Stevens, Carole
Goble, Matthew R. Pocock, Peter Li and Thomas M.
Oinn (2006). Taverna: A tool for building and running
workflows of services. Nucleic Acids Research 34
(Web-Server-Issue): 729–732.

Dom Lachowicz and Caolán McNamara (2006). wvWare,
library for converting Word document.
http://wvware.sourceforge.net/, accessed in August
2012.

Ingo Mierswa, Michael Wurst, Ralf Klinkenberg, Martin
Scholz and Timm Euler (2006). YALE: rapid
prototyping for complex data mining tasks. In Eliassi-
Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.):
Proceedings of KDD-2006, ACM , pp. 935–940.

Janez Kranjc, Vid Podpečan, and Nada Lavrač (2012).
ClowdFlows: A cloud-based scientific workflow
platform. In Proceedings of ECML/PKDD-2012.
September 24-28, 2012, Bristol, UK, Springer LNCS (in
press).

Vid Podpečan, Monika Žakova and Nada Lavrač (2012).
Orange4ws environment for service-oriented data
mining. The Computer Journal (2012), 55(1): 82–98.

Senja Pollak, Anže Vavpetič, Janez Kranjc, Nada Lavrač
and Špela Vintar (2012). In J. Jancsary (ed.):
Proceedings of the 11th Conference on Natural
Language Processing (KONVENS 2012), September
19-21, 2012, Vienna, Austria, pp. 53–60.

Yusuke Shinyama (2010). PDFMiner
http://www.unixuser.org/~euske/python/pdfminer/index
.html, accessed in August 2012.

Jasmina Smailović and Senja Pollak (2011). Semi-
automated construction of a topic ontology from
research papers in the domain of language technologies.
In Proceedings of the 5th Language & Technology
Conference, November 25–27, 2011, Poznan, Poland,
pp. 121–125.

TEI Consortium (2007). TEI P5: Guidelines for
Electronic Text Encoding and Interchange.
http://www.tei-c.org/Guidelines/P5/

Ian H. Witten, Eibe Frank and Mark Hall (2011). Data
Mining: Practical Machine Learning Tools and
Techniques. Third Edition. Morgan Kaufmann.

