
Redundant Information Reduction in
FST-Based Pronunciation Lexicon Compression

Žiga Golob*, Uliana Dorofeeva*, Jerneja Žganec Gros*, Milena Gros†, Simon Dobrišek†

*Alpineon d.o.o.
Ljubljana, Slovenija

{ziga.golob}@alpineon.si
†Faculty of Electrical Engineering
University of Ljubljana, Slovenia

simon.dobrisek@fe.uni-lj.si

Abstract
Finite-state transducers are frequently used for pronunciation lexicon representations in speech engines, in which memory and
processing resources are scarce. This paper proposes a method for further reducing the memory footprint of finite-state transducers
representing pronunciation lexicons. A combination of grapheme-to-allophone rules with a finite-state transducer is proposed, which
yields a 65% smaller finite-state transducer than conventional approaches.

Zmanjševanje odvečnosti informacije pri kompaktnem zapisu slovarjev izgovorjav s pomočjo končnih
pretvornikov

Končni pretvorniki se pogosto uporabljajo za predstavitev slovarjev izgovorjav v sintetizatorjih govora, v katerih je na voljo omejena
količina pomnilnika ter procesorske moči. V tem članku je predstavljena metoda za nadaljnjo zmanjševanje potrebne količine
pomnilnika za predstavitev slovarja izgovorjav s pomočjo končnega pretvornika. Predlagana je uporaba kombinacije grafemsko-
alofonskih pravil ter končnih pretvornikov, kar omogoča izgradnjo 65% manjših končnih pretvornikov kot s pomočjo klasičnih
postopkov.

1. Introduction

Consistent and accurate determination of word
pronunciation is critical to the success of many speech
technology applications. Most state-of-the-art speech
engines performing automatic speech recognition (ASR)
and text-to-speech synthesis (TTS) rely on lexicons,
which contain pronunciation information for many words.
To provide maximum coverage of the words, multiword
expressions, or even phrases that commonly occur in a
given application domain, application-specific words, or
phrase pronunciations may be required, especially for
application-specific proper nouns such as personal names
or names of locations.

Pronunciation lexicons for speech engines contain
grapheme and allophone transcription of lexical words
(Šef et al., 2004). The ―x-sampa-SI-reduced‖ phonetic
alphabet, a subset of the X-SAMPA set as defined for
Slovenian (Zemljak et al., 2002), is used in allophone
transcriptions. An example of a pronunciation lexicon for
a few Slovenian words is shown in Figure 1.

Figure 1. An excerpt from a Slovenian pronunciation

lexicon.

The storage and run-time processing of pronunciation

lexicons is memory consuming, especially for highly
inflected languages, where pronunciation lexicons
typically contain over one million lexical items. In some

systems with limited memory resources—for example, in
speech engines for embedded systems or multilingual
speech engines—using large pronunciation lexicons is not
feasible. In addition, the search time in such lexicons may
be long if the lexicons are too large to be stored in the
main memory or cache.

Therefore, memory-efficient representations of
pronunciation lexicons enabling fast lookup are
mandatory in order to address these limitations. Another
disadvantage of inefficient lexicon representation is the
unnecessary use of system resources.

State-of-the-art pronunciation lexicon representation
techniques used in speech engines are based on structures
called finite-state automata (FSA) as in (Daciuk, 2011)
and finite-state transducers (FSTs) (Dobrišek et al., 2010;
Rojc et al., 2007); very similar structures are also called
tries (Ristov, 2005).

This paper discusses new possibilities for reducing the
size of pronunciation lexicon representation using FSTs.
We report encouraging results that were obtained by
removing redundant information from the allophone
transcription prior to building the FST.

2. FST representations of pronunciation
lexicons

A FST differs from FSA in that when it accepts a
symbol it also outputs another symbol. In this way it can
translate an input string into an output string. An example
of a FST representing a simple pronunciation lexicon from
Table 1 is shown in Figure 2.

GRAPHEMES ALLOPHONES

hiša hi:Sa

hišo hi:SO

hiter hi:t@r

Table 1. Pronunciation lexicon with three lexical

items.

Figure 2. A FST representing a simple pronunciation

lexicon from the example in Table 1. By convention, the

states are represented as circles and marked with their

unique number. The initial state is represented by a bold

circle and final states by double circles. An input label i

and an output label o are marked on the corresponding

directed arc as i : o.

At the beginning, the FST is in its initial state. For
every symbol in the input string, the FST changes its state
according to the transition function and emits an output
symbol. If it moves to a final state when it accepts all the
symbols of the input string, we say that it has accepted the
input string. At that moment the output string, which is
composed of all the emitted symbols, becomes valid.

Many efficient algorithms have been developed for
FSTs (Cyril et al., 2007), such as union, concatenation,
intersection, determinization, minimization, and so on.
When using minimization and determinization, the FST
becomes a very convenient representation of
pronunciation lexicons (Mohri, 1994a; Dobrišek et al.,
2009; Rojc et al., 2011). If one excludes all heteronyms
(words with the same spelling but different
pronunciations), all acyclic FSTs representing
pronunciation lexicons can be determinized (Mohri,
1996), and therefore acyclic FSTs are frequently used for
pronunciation lexicon representations in speech engines.
For representing heteronyms, p-subsequential FSTs can be
used (Cyril et al., 2002). For deterministic FSTs, the
existence of a minimal FST has been proven(Mohri,
1994b). Hereinafter we denote a minimized and
determinized FST as MDFST. Minimization of a FST
transforms the FST into an equivalent FST with a minimal
number of states. A MDFST also exhibits a minimal
number of transitions (Mohri, 1997). The two
deterministic FSTs are said to be equivalent if for every
sequence of input symbols they generate the same
sequence of output symbols.

Table 2 shows the reduction of the number of states by
minimization and determinization for the SI-Pron
Slovenian pronunciation dictionary containing 1,239,401
lexical items.

TYPE STATES TRANSITIONS

FST 11,404,858 12,644,257

MDFST 217,300 517,225

Table 2. Comparison of the number of states and

transitions of FST and MDFST representing the SI-Pron

pronunciation lexicon.

The FST in Figure 2 shows that there are three

possible transitions from the initial state with the same
input symbols. In a deterministic FST there is no state

with more than one transition with the same input symbol.
The advantage of a deterministic FST is lookup speed,
which is linearly dependent only on the length of the input
string and not dependent on the size of the FST.

In Figure 3 an equivalent FST to the one from Figure 2
is shown, which has been both determinized and
minimized (MDFST).

Figure 3. Minimized and determinized FST from

Figure 2: MDFST.

3. Language resources

This paper reports results for Slovenian pronunciation
lexicon SI-Pron containing 1,239,410 lexical entries
(Ţganec Gros et al., 2006).

The lexicon contains grapheme and allophone
transcriptions for all lexical entries. It also contains
additional information such as syllabification,
morphological information, and stress positions. Table 3
shows some statistical properties of the lexicon.

LEXICON WORDS GRAPHEMES ALLOPHONES

SI-Pron 1,239k 12,644k 12,713k

Table 3. Statistical properties of the three chosen

pronunciation lexicons.

All homographs (words with the same spelling but

different meaning) were removed from the lexicon.

4. Experiments and results

It has been reported that for Slovenian it is possible to
achieve a grapheme-to-allophone transcription accuracy of
99.1% by using a set of context-dependent rules if the
stress position and the transcription of the graphemes e
and o in stressed syllables are known in advance (Gros,
1999).

The idea of the following experiment is to remove all
unnecessary information from the pronunciation lexicon
and to model the information left with a simpler and
possibly lighter FST.

The potential of this approach becomes clearer if one
recalls the basic principle of FST minimization. When
minimizing a FST, equivalent states are merged.
Equivalent states are those that have transitions with the
same input and output symbols targeting the same or
equivalent states.

According to (Gros, 1999), the necessary information
for reconstructing the allophone transcription from the
grapheme transcription in Slovenian is the lexical stress
position and the transcriptions of the graphemes e and o in
stressed syllables, which we were able to model with only
three different symbols in the FST output alphabet. This
highly reduced number of different output symbols offers
more possibilities for the state transitions to have equal
input and output symbols and a greater chance for the
possible states to merge.

In this experiment we built a FST representing the
pronunciation lexicon emitting information containing
only the stress position and the transcription variation of
graphemes e and o in stressed syllables.

In Slovenian, when words of foreign origin are
included, the six graphemic vowels a, e, i, o, u, and y
along with the reduced vowel schwa @ can be stressed. A
lexical item can have multiple lexical stress positions.

The lexical stress position can be modeled implicitly
with a FST if, for every accepted grapheme, it emits
information on whether it is stressed or unstressed. The
reduced vowel @ is not part of the grapheme symbol set.
It appears in allophone transcriptions before the consonant
r when preceded and followed by a consonant (e.g., potrt
→ pOt@”rt, prvi → p@”rvi). Therefore, if the reduced
vowel @ is stressed, the FST outputs the information
about stress when it accepts the consonant r.

The allophone transcriptions of the stressed vowels e
and o can be either close e: and o: or open E: and O:. To
model this information, for every accepted vowel e or o,
the FST has to emit information on whether the vowel is
unstressed, stressed open, or stressed close. Therefore,
there are three possible output symbols.

Table 4 shows the possible output symbols of the FST
if we group both the stress and the transcription of the
graphemes e and o into one model. Table 5 shows an
alternative grouping.

FST INPUT SYMBOL FST OUTPUT

SYMBOL

unstressed grapheme 0

stressed vowel a, i, u, y;

consonant r following a stressed reduced

vowel @;

stressed vowels e and o with open transcription

1

stressed vowels e and o with close transcription 2

Table 4. Modeling the FST information output for

stress position and the grapheme e and o transcription.

Stressed vowels e and o with open transcriptions are

grouped with other stressed vowels.

FST INPUT SYMBOL FST OUTPUT

SYMBOL

unstressed grapheme 0

stressed vowel a, i, u, y;

consonant r following a stressed reduced

vowel @;

stressed vowels e and o with close transcription

1

stressed vowels e and o with open transcription 2

Table 5. Modeling the FST information output for

stress position and the grapheme e and o transcription.

Stressed vowels e and o with close transcriptions are

grouped with other stressed vowels.

Tables 4 and 5 represent two possible mappings

between FST input and output symbols. Table 6 shows a
few examples of FST input and output strings derived
from the mapping presented in Table 4 for a few
Slovenian words.

The first two temporary lexicons were constructed for
the SI-Pron pronunciation lexicon based on the mappings

from Tables 4 and 5. These two lexicons represented the
alignments of the symbols (graphemes) in input strings
and symbols (numbers) in output strings. Then we built
the MDFST from these temporary lexicons using the
OpenFST tool.

FST INPUT

STRING

FST OUTPUT

STRING

ALLOPHONE

TRANSCRIPTION

medved 010000 mE:dvEd

prvi 0100 p@”rvi

roža 0200 ro:Za

Table 6. FST output strings for three Slovenian words

(medved, prvi, roža) and their complete allophone

transcription in the last column.

Table 7 shows the comparison between different

approaches. The results in Table 7 show a considerable
65% reduction in the number of states (using the mapping
from Table 5) compared to MDFST storing the complete
allophone transcription.

We also compared the sizes (in MB) of different data
structures representing the information stored in
pronunciation lexicons. We disregarded the sizes of
program code that are necessary to manipulate the data
structures because, if implemented properly, they are
negligible in size in comparison to the data structures.

ALGORITHM STATES TRANSITIONS

FST 11,404,858 12,644,257

MDFST 217,300 517,225

MDFST + information

reduction (table 7 mapping)

78,329 246,674

MDFST + information

reduction (table 8 mapping)

76,846 242,851

FSA 49,741 155,988

Table 7. Comparison between different approaches to

representing the information in the SI-Pron pronunciation

lexicon with FST. The finite-state acceptor (FSA) stores

the information when the specific input string is valid. It

represents the lower bound of the number of states of the

FST with the same input alphabet and accepting the same

language.

The SI-Pron lexicon as UTF8 encoded text represents

the baseline and 100% size. We used the OpenFST tool to
build a MDFST representing the complete lexicon
information and a MDFST representing only the necessary
information for rule-based grapheme-to-allophone
conversion.

We also implemented our own more compact
representation of the FST similar to the implementation
for finite state automata found in (Daciuk, 2011).

It is interesting to compare the lexicon reduction
techniques used to standard methods used in text
compression, such as zip, even though standard text
compression methods are not useful for solving our
problem because their data have to be decompressed
completely to their full size before they can be used. The
results are shown in Table 8.

In its compact form, the MDFST structure representing
the reduced information of the SI-Pron pronunciation
lexicon is over 40 times smaller than the original UTF8-

encoded text representation as seen in Table 8. It is also
three times smaller than the MDFST representing the
complete allophone transcription.

 Size [kB] Size [%]

SI-Pron (UTF8 encoded text) 30,657 100

Compressed SI-Pron (zip) 6,071 19.8

MDFST (OpenFST) 9,948 32.4

MDFST (compact representation) 2,287 7.7

MDFST + information reduction:

Table 4 mapping (OpenFST)

4,084 13.3

MDFST + information reduction:

Table 4 mapping (compact

representation)

708 2.3

 2,3

Table 8. Size of data structures representing

information in the SI-Pron pronunciation lexicon.

5. Conclusion

Finite-state transducers are frequently used for
pronunciation lexicon representations in speech engines,
in which memory and processing resources are scarce.

A method for further memory footprint reduction of
finite-state transducers representing pronunciation
lexicons was proposed in the paper. A combination of
grapheme-to-allophone rules with a FST yielded a 65%
smaller finite-state transducer than conventional
approaches.

All the information that can be reconstructed with a set
of context-dependent rules was removed from the
allophone transcription in the Slovenian pronunciation
lexicon. By building the MDFST for the new lexicon, we
succeeded in significantly reducing the number of states
by 65% and in achieving an implementation over three
times smaller.

The proposed method can be used for efficiently
representing Slovenian pronunciation lexicon resources;
the use of a similar principle could also be considered for
other languages with similar pronunciation properties.

6. Acknowledgements

The research work by the first author was partially
financed by the European Union, European Social Fund,
the framework of the Operational Programme for Human
Resources Development for the Period 2007–2013 under
contract no. P-MR-10/94.

7. References

Cyril A., Mohri M., 2002. p-Subsequentiable Transducers.
Proceedings of the Seventh International Conference on
Implementation and Application of Automata (CIAA
2002), Tours, France. pp. 24–34.

Cyril A., Michael R., Johan S., Wojciech S., Mohri M.,
2007. OpenFst: A General and Efficient Weighted
Finite-State Transducer Library. Proceedings of the
12th International Conference on Implementation and
Application of Automata (CIAA 2007). Lecture Notes
in Computer Science, Prague, Springer-Verlag,
Heidelberg, Germany, 4783: 11-23.

Daciuk J., 2011. Smaller Representation of Finite State
Automata. Proceedings of the 16th International

Conference on Implementation and Application of
Automata, pp. 118–129.

Dobrišek S., Vesnicer B., Mihelič F., 2009. A Sequential
Minimization Algorithm for Finite-State Pronunciation
Lexicon Models. Proceedings of Interspeech 2009,
International Speech Communication Association,
Brighton, UK, pp. 720–723.

Dobrišek S., Ţibert J., Mihelič F., 2010. Towards the
Optimal Minimization of a Pronunciation Dictionary
Model. Petr Sojka, Ales Horak, Ivan Kopecek and
Karel Pala (Eds.). TSD-2010. Lecture Notes in
Computer Science, Brno, Springer, pp. 267–274.

Gros J., Mihelič F., 1999. Acquisition of an Extensive
Rule Set for Slovene Grapheme-to-Allophone
Transcription. Proceedings 6th European Conference on
Speech Communication and Technology. September 5–
9. 1999. Eurospeech 1999. Budapest, 5: 2075–2078.

Mohri M., 1994a. Compact Representations by Finite-
State Transducers. 32nd Meeting of the Association for
Computational Linguistics (ACL '94). Proceedings of
the Conference. Las Cruces. NM, pp. 204–209.

Mohri M., 1994b. Minimization of Sequential
Transducers. Proceedings of the 5th Annual
Symposium on Combinatorial Pattern Matching (CPM
'94), Maxime Crochemore and Dan Gusfield (Eds.).
Vol. 807 of Lecture Notes in Computer Science,
Asilomar, CA, Springer-Verlag, Berlin, pp. 151–163.

Mohri M., 1996. On Some Applications of Finite-State
Automata Theory to Natural Language Processing.
Journal of Natural Language Engineering, 2: 61–80.

Mohri M., 1997. Finite-State Transducers in Language
and Speech Processing. Computational Linguistics, 33:
269–311.

Ristov S., 2005. LZ Trie and Dictionary Compression.
Jurnual Software-Practice & Experience, pp. 445–465.

Rojc M., Kačič Z., 2007. Time and Space-Efficient
Architecture for a Corpus-Based Text-to-Speech
Synthesis System. Speech Communication, 49: 230–
249.

Rojc M., Mlakar I., 2011. Multilingual and Multimodal
Corpus-Based Text-to-Speech System – PLATTOS.
Ipšić Ivo (Ed.). Speech and Language Technologies,
InTech, Available from:
http://www.intechopen.com/books/speech-and-
language-technologies/multilingual-and-multimodal-
corpus-based-text-to-speech-system-plattos. Accessed
2012 June 6.

Šef T., Gams M., 2004. Data mining for creating
accentuation rules, Applied. Artificial Intelligence, vol.
17, pp. 395-410.

Zemljak M., Kačič Z., Dobrišek S, Gros J, Weiss P., 2002,
Računalniški simbolni fonetični zapis slovenskega
govora. Slavistična revija, 50: 159–169.

Ţganec-Gros J., Cvetko-Oresnik V., Jakopin P., 2006. SI-
Pron Pronunciation Lexicon: A New Language
Resource for Slovenian. Informatica, 30: 447–452.

