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Abstract 
Finite-state transducers are frequently used for pronunciation lexicon representations in speech engines, in which memory and 
processing resources are scarce. This paper proposes a method for further reducing the memory footprint of finite-state transducers 
representing pronunciation lexicons. A combination of grapheme-to-allophone rules with a finite-state transducer is proposed, which 
yields a 65% smaller finite-state transducer than conventional approaches. 

Zmanjševanje odvečnosti informacije pri kompaktnem zapisu slovarjev izgovorjav s pomočjo končnih 
pretvornikov 

Končni pretvorniki se pogosto uporabljajo za predstavitev slovarjev izgovorjav v sintetizatorjih govora, v katerih je na voljo omejena 
količina pomnilnika ter procesorske moči. V tem članku je predstavljena metoda za nadaljnjo zmanjševanje potrebne količine 
pomnilnika za predstavitev slovarja izgovorjav s pomočjo končnega pretvornika. Predlagana je uporaba kombinacije grafemsko-
alofonskih pravil ter končnih pretvornikov, kar omogoča izgradnjo 65% manjših končnih pretvornikov kot s pomočjo klasičnih 
postopkov. 

1. Introduction  

Consistent and accurate determination of word 
pronunciation is critical to the success of many speech 
technology applications. Most state-of-the-art speech 
engines performing automatic speech recognition (ASR) 
and text-to-speech synthesis (TTS) rely on lexicons, 
which contain pronunciation information for many words. 
To provide maximum coverage of the words, multiword 
expressions, or even phrases that commonly occur in a 
given application domain, application-specific words, or 
phrase pronunciations may be required, especially for 
application-specific proper nouns such as personal names 
or names of locations.  

Pronunciation lexicons for speech engines contain 
grapheme and allophone transcription of lexical words 
(Šef et al., 2004). The ―x-sampa-SI-reduced‖ phonetic 
alphabet, a subset of the X-SAMPA set as defined for 
Slovenian (Zemljak et al., 2002), is used in allophone 
transcriptions. An example of a pronunciation lexicon for 
a few Slovenian words is shown in Figure 1. 

 

 

Figure 1. An excerpt from a Slovenian pronunciation 

lexicon. 
 
The storage and run-time processing of pronunciation 

lexicons is memory consuming, especially for highly 
inflected languages, where pronunciation lexicons 
typically contain over one million lexical items. In some 

systems with limited memory resources—for example, in 
speech engines for embedded systems or multilingual 
speech engines—using large pronunciation lexicons is not 
feasible. In addition, the search time in such lexicons may 
be long if the lexicons are too large to be stored in the 
main memory or cache.  

Therefore, memory-efficient representations of 
pronunciation lexicons enabling fast lookup are 
mandatory in order to address these limitations. Another 
disadvantage of inefficient lexicon representation is the 
unnecessary use of system resources. 

State-of-the-art pronunciation lexicon representation 
techniques used in speech engines are based on structures 
called finite-state automata (FSA) as in (Daciuk, 2011) 
and finite-state transducers (FSTs) (Dobrišek et al., 2010; 
Rojc et al., 2007); very similar structures are also called 
tries (Ristov, 2005). 

This paper discusses new possibilities for reducing the 
size of pronunciation lexicon representation using FSTs. 
We report encouraging results that were obtained by 
removing redundant information from the allophone 
transcription prior to building the FST. 

2. FST representations of pronunciation 
lexicons 

A FST differs from FSA in that when it accepts a 
symbol it also outputs another symbol. In this way it can 
translate an input string into an output string. An example 
of a FST representing a simple pronunciation lexicon from 
Table 1 is shown in Figure 2. 

 

GRAPHEMES ALLOPHONES 

hiša hi:Sa 

hišo hi:SO 

hiter hi:t@r 

Table 1. Pronunciation lexicon with three lexical 

items. 



 

 

Figure 2. A FST representing a simple pronunciation 

lexicon from the example in Table 1. By convention, the 

states are represented as circles and marked with their 

unique number. The initial state is represented by a bold 

circle and final states by double circles. An input label i 

and an output label o are marked on the corresponding 

directed arc as i : o. 
 

At the beginning, the FST is in its initial state. For 
every symbol in the input string, the FST changes its state 
according to the transition function and emits an output 
symbol. If it moves to a final state when it accepts all the 
symbols of the input string, we say that it has accepted the 
input string. At that moment the output string, which is 
composed of all the emitted symbols, becomes valid. 

Many efficient algorithms have been developed for 
FSTs (Cyril et al., 2007), such as union, concatenation, 
intersection, determinization, minimization, and so on. 
When using minimization and determinization, the FST 
becomes a very convenient representation of 
pronunciation lexicons (Mohri, 1994a; Dobrišek et al., 
2009; Rojc et al., 2011). If one excludes all heteronyms 
(words with the same spelling but different 
pronunciations), all acyclic FSTs representing 
pronunciation lexicons can be determinized (Mohri, 
1996), and therefore acyclic FSTs are frequently used for 
pronunciation lexicon representations in speech engines. 
For representing heteronyms, p-subsequential FSTs can be 
used (Cyril et al., 2002). For deterministic FSTs, the 
existence of a minimal FST has been proven(Mohri, 
1994b). Hereinafter we denote a minimized and 
determinized FST as MDFST. Minimization of a FST 
transforms the FST into an equivalent FST with a minimal 
number of states. A MDFST also exhibits a minimal 
number of transitions (Mohri, 1997). The two 
deterministic FSTs are said to be equivalent if for every 
sequence of input symbols they generate the same 
sequence of output symbols. 

Table 2 shows the reduction of the number of states by 
minimization and determinization for the SI-Pron 
Slovenian pronunciation dictionary containing 1,239,401 
lexical items. 

 

TYPE STATES TRANSITIONS 

FST 11,404,858 12,644,257 

MDFST 217,300  517,225 

Table 2. Comparison of the number of states and 

transitions of FST and MDFST representing the SI-Pron 

pronunciation lexicon. 
 
The FST in Figure 2 shows that there are three 

possible transitions from the initial state with the same 
input symbols. In a deterministic FST there is no state 

with more than one transition with the same input symbol. 
The advantage of a deterministic FST is lookup speed, 
which is linearly dependent only on the length of the input 
string and not dependent on the size of the FST. 

In Figure 3 an equivalent FST to the one from Figure 2 
is shown, which has been both determinized and 
minimized (MDFST). 

 

 

Figure 3. Minimized and determinized FST from 

Figure 2: MDFST. 

3. Language resources 

This paper reports results for Slovenian pronunciation 
lexicon SI-Pron containing 1,239,410 lexical entries 
(Ţganec Gros et al., 2006).  

The lexicon contains grapheme and allophone 
transcriptions for all lexical entries. It also contains 
additional information such as syllabification, 
morphological information, and stress positions. Table 3 
shows some statistical properties of the lexicon. 

 

LEXICON WORDS GRAPHEMES ALLOPHONES 

SI-Pron 1,239k 12,644k 12,713k 

Table 3. Statistical properties of the three chosen 

pronunciation lexicons. 
 
All homographs (words with the same spelling but 

different meaning) were removed from the lexicon. 

4. Experiments and results 

It has been reported that for Slovenian it is possible to 
achieve a grapheme-to-allophone transcription accuracy of 
99.1% by using a set of context-dependent rules if the 
stress position and the transcription of the graphemes e 
and o in stressed syllables are known in advance (Gros, 
1999). 

The idea of the following experiment is to remove all 
unnecessary information from the pronunciation lexicon 
and to model the information left with a simpler and 
possibly lighter FST. 

The potential of this approach becomes clearer if one 
recalls the basic principle of FST minimization. When 
minimizing a FST, equivalent states are merged. 
Equivalent states are those that have transitions with the 
same input and output symbols targeting the same or 
equivalent states. 

According to (Gros, 1999), the necessary information 
for reconstructing the allophone transcription from the 
grapheme transcription in Slovenian is the lexical stress 
position and the transcriptions of the graphemes e and o in 
stressed syllables, which we were able to model with only 
three different symbols in the FST output alphabet. This 
highly reduced number of different output symbols offers 
more possibilities for the state transitions to have equal 
input and output symbols and a greater chance for the 
possible states to merge. 



In this experiment we built a FST representing the 
pronunciation lexicon emitting information containing 
only the stress position and the transcription variation of 
graphemes e and o in stressed syllables. 

In Slovenian, when words of foreign origin are 
included, the six graphemic vowels a, e, i, o, u, and y 
along with the reduced vowel schwa @ can be stressed. A 
lexical item can have multiple lexical stress positions. 

The lexical stress position can be modeled implicitly 
with a FST if, for every accepted grapheme, it emits 
information on whether it is stressed or unstressed. The 
reduced vowel @ is not part of the grapheme symbol set. 
It appears in allophone transcriptions before the consonant 
r when preceded and followed by a consonant (e.g., potrt 
→ pOt@”rt, prvi → p@”rvi). Therefore, if the reduced 
vowel @ is stressed, the FST outputs the information 
about stress when it accepts the consonant r. 

The allophone transcriptions of the stressed vowels e 
and o can be either close e: and o: or open E: and O:. To 
model this information, for every accepted vowel e or o, 
the FST has to emit information on whether the vowel is 
unstressed, stressed open, or stressed close. Therefore, 
there are three possible output symbols.  

Table 4 shows the possible output symbols of the FST 
if we group both the stress and the transcription of the 
graphemes e and o into one model. Table 5 shows an 
alternative grouping. 

 

FST INPUT SYMBOL FST OUTPUT 

SYMBOL 

unstressed grapheme 0 

stressed vowel a, i, u, y; 

consonant r following a stressed reduced 

vowel @; 

stressed vowels e and o with open transcription 

1 

stressed vowels e and o with close transcription 2 

Table 4. Modeling the FST information output for 

stress position and the grapheme e and o transcription. 

Stressed vowels e and o with open transcriptions are 

grouped with other stressed vowels. 
 

FST INPUT SYMBOL FST OUTPUT 

SYMBOL 

unstressed grapheme 0 

stressed vowel a, i, u, y; 

consonant r following a stressed reduced 

vowel @; 

stressed vowels e and o with close transcription 

1 

stressed vowels e and o with open transcription 2 

Table 5. Modeling the FST information output for 

stress position and the grapheme e and o transcription. 

Stressed vowels e and o with close transcriptions are 

grouped with other stressed vowels. 
 
Tables 4 and 5 represent two possible mappings 

between FST input and output symbols. Table 6 shows a 
few examples of FST input and output strings derived 
from the mapping presented in Table 4 for a few 
Slovenian words. 

The first two temporary lexicons were constructed for 
the SI-Pron pronunciation lexicon based on the mappings 

from Tables 4 and 5. These two lexicons represented the 
alignments of the symbols (graphemes) in input strings 
and symbols (numbers) in output strings. Then we built 
the MDFST from these temporary lexicons using the 
OpenFST tool. 

FST INPUT 

STRING 

FST OUTPUT 

STRING 

ALLOPHONE 

TRANSCRIPTION 

medved 010000  mE:dvEd  

prvi 0100  p@”rvi  

roža 0200  ro:Za  

Table 6. FST output strings for three Slovenian words 

(medved, prvi, roža) and their complete allophone 

transcription in the last column. 
 
Table 7 shows the comparison between different 

approaches. The results in Table 7 show a considerable 
65% reduction in the number of states (using the mapping 
from Table 5) compared to MDFST storing the complete 
allophone transcription. 

We also compared the sizes (in MB) of different data 
structures representing the information stored in 
pronunciation lexicons. We disregarded the sizes of 
program code that are necessary to manipulate the data 
structures because, if implemented properly, they are 
negligible in size in comparison to the data structures. 

 

ALGORITHM STATES TRANSITIONS 

FST 11,404,858 12,644,257 

MDFST 217,300  517,225 

MDFST + information 

reduction (table 7 mapping) 

78,329 246,674 

MDFST + information 

reduction (table 8 mapping) 

76,846 242,851 

FSA 49,741 155,988 

Table 7. Comparison between different approaches to 

representing the information in the SI-Pron pronunciation 

lexicon with FST. The finite-state acceptor (FSA) stores 

the information when the specific input string is valid. It 

represents the lower bound of the number of states of the 

FST with the same input alphabet and accepting the same 

language. 
 
The SI-Pron lexicon as UTF8 encoded text represents 

the baseline and 100% size. We used the OpenFST tool to 
build a MDFST representing the complete lexicon 
information and a MDFST representing only the necessary 
information for rule-based grapheme-to-allophone 
conversion. 

We also implemented our own more compact 
representation of the FST similar to the implementation 
for finite state automata found in (Daciuk, 2011).  

It is interesting to compare the lexicon reduction 
techniques used to standard methods used in text 
compression, such as zip, even though standard text 
compression methods are not useful for solving our 
problem because their data have to be decompressed 
completely to their full size before they can be used. The 
results are shown in Table 8. 

In its compact form, the MDFST structure representing 
the reduced information of the SI-Pron pronunciation 
lexicon is over 40 times smaller than the original UTF8-



encoded text representation as seen in Table 8. It is also 
three times smaller than the MDFST representing the 
complete allophone transcription. 

 

 Size [kB] Size [%] 

SI-Pron (UTF8 encoded text) 30,657 100 

Compressed SI-Pron (zip) 6,071 19.8 

MDFST (OpenFST) 9,948 32.4 

MDFST (compact representation) 2,287 7.7 

MDFST + information reduction: 

Table 4 mapping (OpenFST) 

4,084 13.3 

MDFST + information reduction: 

Table 4 mapping (compact 

representation) 

708 2.3 

 2,3 

Table 8. Size of data structures representing 

information in the SI-Pron pronunciation lexicon. 

5. Conclusion 

Finite-state transducers are frequently used for 
pronunciation lexicon representations in speech engines, 
in which memory and processing resources are scarce.  

A method for further memory footprint reduction of 
finite-state transducers representing pronunciation 
lexicons was proposed in the paper. A combination of 
grapheme-to-allophone rules with a FST yielded a 65% 
smaller finite-state transducer than conventional 
approaches.  

All the information that can be reconstructed with a set 
of context-dependent rules was removed from the 
allophone transcription in the Slovenian pronunciation 
lexicon. By building the MDFST for the new lexicon, we 
succeeded in significantly reducing the number of states 
by 65% and in achieving an implementation over three 
times smaller.  

The proposed method can be used for efficiently 
representing Slovenian pronunciation lexicon resources; 
the use of a similar principle could also be considered for 
other languages with similar pronunciation properties. 
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