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Abstract
A typical speech recognition system uses acoustic features to represent speech for its processing. Recently, articulatory features were
introduced to serve the same purpose. They are motivated by linguistic knowledge and may therefore provide better or complementary
representation of speech signal. We present research on recognition of such articulatory features by Support Vector Machines with three
types of kernels—a linear kernel and two polynomial kernels. As input for recognizers we use standard set of Mel-frequency cepstral
coefficients extended with values of formants and pitch of the speech signal. Performance is compared to recent results for the task
based on other methods of machine learning. We conclude that for most of the articulatory features SVMs with a polynomial kernel give
superior performance.

Razpoznavanje značilk artikulatornega načina z linearnimi in polinomskimi jedri
Tipičen sistem razpoznavanja govora uporablja pri procesiranju za predstavitev govora akustične značilke. V zadnjem času so se z istim
namenom začele uporabljati tudi artikulatorne značilke. Uporabo leteh je motiviralo jezikoslovno znanje, zato lahko morda omogočajo
boljšo ali komplementarno predstavitev govornega signala. V prispevku predstavljamo raziskavo o tem, kako z metodo podpornih
vektorjev (MPV) razpoznavamo artikulatorne značilke s tremi vrstami jeder z linearnim jedrom in z dvema polinomskima jedroma.
Kot vhodne podatke za razpoznavalnike uporabljamo standardno množico melodičnih frekvennih kepstralnih koeficientov, razširjenih
z vrednostmi formantov in osnovnih period govornega signala. Kakovost izvedbe primerjamo z nedavnimi rezultati za isto nalogo na
podlagi drugih metod strojnega učenja. Sklenemo z ugotovitvijo, da dajo za večino artikulatornih značilk polinomske MPV najboljše
rezultate.

1. Introduction
Speech representations today are usually based on the
acoustic information of the signal (Heřmanský, 1999).
However, by relying only on this acoustic information,
these speech representations seem to achieve only moderate
success, especially, in adverse environments (noisy, out-of-
task, out-of-vocabulary, etc). One of the ways to improve
performance in such environments is to integrate linguistic
knowledge as suggested in (Launay et al., 2002; Carson-
Berndsen, 1998).

Articulatory features (AF) have been shown to improve
word recognition accuracy under variable conditions of
speech signal production. For example, in a multilingual
environment, feature recognizers trained on data from dif-
ferent languages were shown to have the capability of im-
proving the overall performance by ensemble recognizer or
by crosslingual recognizer (Stüker et al., 2003). The AF
representations have also been shown to perform well in
noisy environment (Kirchhoff, 1999).

AF is thought to be a good compromise, offering bet-
ter descriptions of the acoustic signal than phonemes yet
still providing a linguistically interpretable symbolic anno-
tation. Acoustic correlates of features have been described
in the literature (Stevens, 2000; Stevens, 1980). The first
detailed description of distinctive features (Jakobson et al.,
1952) assumed that they had identifiable counterparts.

In this paper, Support Vector Machines (SVMs) with
three types of kernels are presented for extraction articula-
tory features from the speech signal. The performance of
the SVMs is compared among them and against referenced
results of bagging that are reported as giving best results
for this task among machine learning methods. We only

refer to reported performance of Hidden Markov Models
on this task (Kanokphara et al., 2006) where they do not
provide good performance, apparently for the reasons of
weaker probabilistic dependence between adjacent articu-
latory features in the speech signal. Our article extends the
research reported in (Kanokphara et al., 2006) and (Macek
et al., 2005). The SVM classifiers with variable kernels
were run with the SVMLight implementation (Joachims,
1999).

Systematically, this paper is organized as follows. Sec-
tion 2. explains the details of the experimental paradigm
used in this paper, i.e. the corpus, the evaluation method
and the feature table. Section 3. describes the general
framework of support vector machines and Section 4.
presents the results of experiments with SVM-based AF ex-
traction. Finally, discussion and conclusions are presented
in Section 5.

2. Experimental Setup
2.1. The Corpus

In the experiments we used the standard TIMIT cor-
pus (Garofolo et al., 1993) consisting of 6300 sentences, 10
sentences spoken by each of 630 speakers, of which 462 are
in the training set and 168 are in the testing set. There is no
overlap between the training and testing sentences, except
2 SA sentences that were read by all speakers. The train-
ing set contains 4620 utterances and the testing set contains
1680 utterances. The core test set, which is the abridged
version of the complete test set, consists of 192 utterances,
8 from each of 24 speakers. In this paper, the full training
set with SA sentences is used as the training set while only
the core test set without SA sentences is used as the test set.



Articulatory Frequency Phone
manner feature in corpus (TIMIT transcription used)
approximant 8.12% axr, r, w, y
closure 9.68% bcl, dcl, gcl, kcl, pcl, tcl
flap 0.78% dx, nx
fricative 16.47% ch, dh, f, hh, hv, jh, s, sh, th,

v, z, zh
lateral approx. 3.37% el, l
nasal 5.72% em, en, eng, m, n, ng, nx
stop 16.22% b, bcl, d, dcl, g, gcl, k, kcl,

p, pcl, q, t, tcl
vocalic 37.99% aa, ae, ah, ao, aw, ax, ax-h,

ay, eh, er, ey, ih, ix, iy, ow,
oy, uh, uw, ux

Table 1: Assignment of articulatory manner feature classes
to phonemes and their frequency in the TIMIT corpus

2.2. The Evaluation
The evaluation method used in this paper is a compari-

son of overall accuracy in terms of frame error rate (FER)
together with recall, precision and F1-measure. FER is
widely used for articulatory feature extraction evaluation
(Chang et al., 2005). In our method the speech signal is
represented as a sequence of numeric vectors where each
vector represents speech in each time frame. Therefore,
the AF extraction systems are evaluated on the frame level.
Due to variable distribution of classes for each articulatory
feature it is necessary to extend the performance measure
of accuracy with the values of precision, recall, and F1-
measure that are used in Tables 3, 4 and 5. The precision is
defined as the ratio

number of correctly classified instances of class c

number of instances classified as class c

and the recall is defined as the ratio

number of correctly classified instances of class c

number of instances of class c

The trade-off between precision and recall is measured by
the value of F1-measure defined as

2 ∗ precision ∗ recall
precision + recall

.

All these measures analyse the performance for each class
individually.

A true AF evaluation should compare between a refer-
ence (annotated at the feature level) and a hypothesized AF
transcription. However, due to the cost and difficulty of
corpus construction process, no feature annotated reference
exists. In this paper, we directly convert reference annota-
tions at the phone level into reference annotations at the ar-
ticulatory feature level. These annotations lack some of the
coarticulation information which would be typically found
in references directly annotated at the articulatory feature
level. However, this is the only resource available and it
is widely accepted as the reference transcriptions for AF
evaluation. Such transcription was done for the TIMIT cor-
pus according to assignment of articulatory manner feature

Articulatory F1-
feature Accuracy Precision Recall measure
−approximant 93.12% 0.947 0.98 0.963
+approximant 0.637 0.387 0.482
−closure 94.41% 0.957 0.982 0.970
+closure 0.763 0.567 0.651
−flap 99.76% 0.989 0.995 0.991
+flap 0.000 0.000 0.000
−fricative 97.19% 0.975 0.992 0.983
+fricative 0.956 0.865 0.908
−lateral approx. 96.63% 0.971 0.995 0.983
+lateral approx. 0.473 0.124 0.196
−nasal 96.55% 0.977 0.987 0.982
+nasal 0.636 0.504 0.562
−stop 89.64% 0.929 0.951 0.940
+stop 0.666 0.574 0.616
−vocalic 89.22% 0.907 0.907 0.906
+vocalic 0.873 0.874 0.873

Table 2: Accuracy Rates for Bagging with REP trees on
TIMIT core test set for recognition of articulatory manner
features

Articulatory F1-
feature Accuracy Precision Recall measure
−approximant 94.15% 0.952 0.987 0.969
+approximant 0.569 0.251 0.348
−closure 94.90% 0.961 0.984 0.973
+closure 0.753 0.556 0.640
−flap 99.76% 0.998 1.000 0.999
+flap 0.000 0.000 0.000
−fricative 93.84% 0.952 0.974 0.963
+fricative 0.870 0.778 0.821
−lateral approx. 96.77% 0.968 1.000 0.984
+lateral approx. 0.000 0.000 0.000
−nasal 96.30% 0.973 0.988 0.981
+nasal 0.720 0.533 0.613
−stop 89.86% 0.903 0.990 0.945
+stop 0.795 0.276 0.410
−vocalic 89.13% 0.934 0.886 0.910
+vocalic 0.831 0.899 0.864

Table 3: Accuracy Rates for SVMs with linear kernel on
TIMIT core test set for recognition of articulatory manner
features

classes to phonemes presented in Table 1. Among the man-
ner features we included both, closure and stop, where stop
might be considered as a sequence of a closure and a burst.
This allows us to see from performance of the respective
classifiers if the simpler feature is more distinctive which is
the case in our experiments.

For reasons of further comparison we present in Table
2 the performance on the task of articulatory feature recog-
nition for the method of bagging (Breiman, 1996) with re-
duced error pruned (REP) decision trees (Quinlan, 1987)
that was reported to perform best among several machine
learning techniques on the same data (Macek et al., 2005).



Articulatory F1-
feature Accuracy Precision Recall measure
−approximant 94.85% 0.967 0.979 0.973
+approximant 0.606 0.497 0.546
−closure 96.13% 0.976 0.982 0.979
+closure 0.782 0.729 0.754
−flap 99.76% 0.998 1.000 0.999
+flap 0.000 0.000 0.000
−fricative 95.10% 0.958 0.984 0.970
+fricative 0.916 0.804 0.856
−lateral approx. 97.44% 0.977 0.997 0.987
+lateral approx. 0.772 0.294 0.426
−nasal 97.94% 0.985 0.993 0.989
+nasal 0.862 0.745 0.799
−stop 92.35% 0.949 0.965 0.957
+stop 0.726 0.642 0.682
−vocalic 91.52% 0.936 0.926 0.931
+vocalic 0.883 0.898 0.890

Table 4: Accuracy Rates for SVMs with polynomial kernel
of order d = 2 on TIMIT core test set for recognition of
articulatory manner features

3. Support Vector Machines
Support Vector Machines learn separating hyperplanes

to classify instances in the feature space that are mapped
from the input space of the classified data. The mapping
from input space to feature space is performed with appli-
cation of a kernel on the feature space. The dimension of
the feature space is typically much higher than that of the
original input space. The term ’feature’ in this context is of
course distinct from articulatory feature.

For a binary classification task with data points xi

(i = 1, . . . , n) and labels yi we have the decision function
f(x) = sgn(w · x + b). If the dataset is separable we can
find a w such that the decision function will assign value
f(xi) = yi for every i. As the sign is invariant to positive
scaling of the expression inside of the sign, we can define
canonical hyperplanes such that w · x + b = 1 for the clos-
est points on one side and w · x + b = −1 for the closest
points on the other side. The separating hyperplane is then
defined by w·x+b = 0 and its normal is then w/‖w‖2. The
margin between the canonical hyperplanes can be found as
a projection of distance between the two closest points on
opposite sides (x1 and x2) on the normal of separating hy-
perplane. Since w · x1 + b = 1 and w · x2 + b = −1 the
margin is 1/‖w‖2.

The SVM approach to binary decision function learning
is to maximize the margin 1/‖w‖2 that is summarized in an
optimization task formulation

min g(w) =
1
2
‖w‖2

2 w.r.t. yi(w · xi + b) ≥ 1 for all i

and the learning task can be reduced to minimization of the
primal lagrangian

L =
1
2
(wT · w)− αi(yi(w · xi + b)− 1),

where αi are Lagrangian multipliers.

Articulatory F1-
feature Accuracy Precision Recall measure
−approximant 94.96% 0.969 0.977 0.973
+approximant 0.608 0.537 0.570
−closure 96.30% 0.977 0.982 0.980
+closure 0.789 0.745 0.766
−flap 99.77% 0.998 1.000 0.999
+flap 1.000 0.030 0.058
−fricative 95.30% 0.959 0.985 0.972
+fricative 0.922 0.810 0.862
−lateral approx. 97.49% 0.979 0.996 0.987
+lateral approx. 0.728 0.356 0.478
−nasal 97.97% 0.986 0.993 0.989
+nasal 0.856 0.757 0.803
−stop 93.08% 0.954 0.967 0.961
+stop 0.753 0.682 0.715
−vocalic 91.73% 0.935 0.931 0.933
+vocalic 0.890 0.895 0.893

Table 5: Accuracy Rates for SVMs with polynomial kernel
of order d = 3 on TIMIT core test set for recognition of
articulatory manner features

3.1. Kernels

From the description of support vector machines it is
apparent that for a nonlinear problem it is not suitable to use
a linear classifier. To make use of the beneficial properties
of a linear SVM we need to map nonlinearly separable data
into a space of typically higher dimensionality where linear
separation of the data is possible. Thus we define a map
from the input space X into feature space H, Φ : X → H.

Although there is an infinite number of such mappings
only some are suitable for practical application for com-
putational complexity reasons. The kernel trick (Schölkopf
and Smola, 2002) relieves from often exponential explosion
of computations by introducing kernel k that is equivalent
to the map Φ in that it holds 〈Φ(x),Φ(x′)〉 = k(x, x′),
where 〈., .〉 is dot product. This property holds for polyno-
mial kernels that map input vector into the feature vector
composed of ordered polynomial expansions, eg. for order
d = 2 of the polynomial and 2-dimensional input space we
have Φ : (x1, x2) → (x2

1, x
2
2, 2x1x2).

4. Experiments with SVMs for Articulatory
Feature Recognition

We extracted 52 values for every frame of speech signal
that were used as inputs for the SVM classifiers. From each
frame we extracted 12 Mel-frequency Cepstral Coefficients
together with first and second order differences, frequen-
cies of formants (F1-F5) with first order differences, band-
widths of detected formants, and fundamental frequency.
The length of the speech signal frames was set to 25 ms
and step between two adjacent frames to 10 ms. The origi-
nal speech signal was sampled at 16 kHz. The distributions
of classes vary significantly for different types of features.
While the distribution of classes is almost equal (the case of
AF vocalic) for half of the articulatory features, in the rest
of the cases the positive classes are rare in the data. This



has a strong influence on the recall of the positive classes
while the overall accuracy remains high.

In Tables 3, 4 and 5 we present results for SVMs with
linear kernel and with polynomial kernel of second and
third order, respectively, for the recognition of manner fea-
tures based on FER on TIMIT core test set. The values of
recall, precision, and F1-measure are presented for positive
and negative classes of a articualtory feature.

The comparison of individual kernels in the SVM clas-
sification leaves us with observation that the performance
improves for all articulatory features with increasing order
of used kernels. From comparison of the performances with
bagging we see that all SVMs perform better in terms of
F1-measure for all features except the feature fricative.

Interestingly, drop in the ratio of cases with positive
class in the data need not necessarily lead to drop in per-
formance if it is accompanied by increase of ’compactness’
of the class. This can be seen from the better performance
for the feature closure which is on the frame level a subset
of the feature stop.

5. Conclusion
We presented support vector machines with three types

of kernels as approaches to recognition of articulatory man-
ner features that we use as a building block of a continuous
speech recognizer. The comparison was made between a
linear and two polynomial kernels of second and third order
for isolated frame recognition approach. Our results show
high dependence of the performance on positive/negative
class balance in the data whereby with increasing unbal-
ance of the class distributions the performance of recogniz-
ers degrades.

According to the frame based values of F1-measure the
SVM with polynomial kernel of third order gave superior
performance over SVMs with the remaining two types of
kernel for all articulatory manner features. These superi-
ority of the third order polynomial kernel is underlined by
monotone increase of the F1-measure for all classes. The
comparison of SVM with third order polynomial kernel
with bagging gives very similar results except for the ar-
ticulatory feature fricative where the performance is better
for bagging.

Performance of the SVMs was dependent on the fre-
quency of occurrence of classes in the data. It achieved
better performance in terms of recall, accuracy and F1-
measure in cases where the distribution of positive and neg-
ative classes was not too unbalanced. An especially inter-
esting case of this influence is the feature flap for which
the positive class is contained in less the one percent of the
speech frames. Although this feature was virtually unde-
tected with our methods, from the point of view of speech
recognition its practical importance is obviously smaller
than that of more frequent articulatory features.
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