
A Review of AlfaNum Speech Technologies
for Serbian, Croatian and Macedonian

Vlado Delić*, Milan Sečujski*, Darko Pekar&, Nikša Jakovljević*, Dragiša Mišković&

* Faculty of Engineering, University of Novi Sad
Trg Dositeja Obradovića 6, Novi Sad, Serbia

{vdelic, secujski, jakovnik}@uns.ns.ac.yu
& AlfaNum – Speech Technologies

Trg Dositeja Obradovića 6, Novi Sad, Serbia
{darko.pekar, dragisa.miskovic}@alfanum.co.yu

Abstract
This paper gives a brief review of the development of systems for automatic speech recognition and text-to-speech synthesis in
Serbian, Croatian and Macedonian language, at the Faculty of Engineering, University of Novi Sad, Serbia. The systems developed
within this project enable two-way communication between humans and machines. These systems are predecessors to many
commercial services such as voice portals and interactive voice response systems. Some original features of these systems, related to
certain particularities of south-Slavic languages, will be illustrated as well. Available APIs and interfaces designed for using these
software components in custom applications will also be described.

Pregled govornih tehnologij za srbščino, hrvaščino in makedonščino skupine AlfaNum
Članek poda kratek pregled razvoja sistemov samodejnega razpoznavanja govora in samodejnega tvorjenja govora iz besedil za srbski,
hrvaški in makedonski jezik na Fakulteti za inženiring Univerze v Novem Sadu. Sistemi, ki so bili razvit pri tem projektu, omogočajo
dvosmerno komunikacijo med človekom in računalnikom. Tovrstni sistemi so predhodniki mnogih komercialnih storitev, kot so
glasovni portali in interaktivni govorni odzivniki. Ponazorjene bodo tudi nekatere izvirne značilnosti sistemov, ki so povezane s
posebnostmi južnoslovanskih jezikov. Ob tem bodo opisani tudi razpoložljivi programski vmesniki (API) in vmesniki, ki smo jih
razvili za uporabo programskih komponent pri uporabniških aplikacijah.

1. Introduction
Since speech is the most natural means of

communication between humans, people have been trying
to develop system that would enable them to extend this
interface to communication with machines as well. Using
automatic speech recognition (ASR) and text-to-speech
synthesis (TTS), humans can talk to devices in their midst,
such as household appliances, industry machines, cars,
toys or remote computers, even via telephone. One of the
important applications of these technologies is also
providing independence in computer access to the
physically impaired (particularly the visually impaired).

However, speech technologies are language dependent
and in some regions they can hardly ever be imported
from abroad as most other technologies. They have to be
developed for each language separately, as is the case with
languages such as Serbian, Croatian and Macedonian,
having in mind all their peculiarities. It cannot be
expected that some of the world's biggest companies
dealing with speech technologies would decide to develop
all resources needed for high-quality ASR and TTS for
such a small and closed market in the near future.

A group at the Faculty of Engineering, University of
Novi Sad, Serbia, called AlfaNum has been dedicated to
the development of these technologies for ten years, and
their results include phoneme-based automatic speech
recognition over the telephone line with accuracy varying
between 95% and 99% depending on vocabulary size and
sound quality, as well as the first text-to-speech system in
Serbian, Croatian and Macedonian taking into account
linguistic information and thus greatly enhancing intel-
ligibility and naturalness of synthesized speech. These
systems are the basis of a number of applications, such as

audio libraries and a speech-enabled web site for the
visually impaired, as well as many commercial
applications including interactive voice response systems
and call centres.

2. AlfaNum Speech Synthesizer
During the development of the first high-quality TTS

for Serbian language, this team has encountered many
problems linked to bridging the gap between plain text
and synthesized speech with all its typical features such as
intelligibility and naturalness. There is no explicit
information in a plain text concerning phone durations,
pitch contours nor energy variations. These factors also
depend on the meaning of the sentence, emotions and
speaker characteristics, which further aggravates the task
of attaining high naturalness of synthesized speech
(Dutoit, 1997). While Serbian and Croatian are tonal
languages, having high-low pitch patterns permanently
associated with words, Macedonian is a pitch-accented
language with antepenultimate stress on most words,
excluding clitics, words of foreign origin as well as some
other word groups. Nevertheless, a uniform dictionary-
based strategy for lexical stress assignment has been
successfully employed in all three cases.

The TTS engine has two main functions: text analysis
and synthesis of the speech signal. Text analysis includes
text processing such as expanding abbreviations, as well
as resolution of morphological and syntactic ambiguities
based on a comprehensive accentuation dictionary as well
as rule-based syntax analysis. A separate dictionary and
syntax analysis techniques were required for each
language. Lexical stress assignment, as one of the most
important factors influencing the shape of the pitch
contour, is performed using a rule-based algorithm

mailto:@uns.ns.ac.yu
mailto:@alfanum.co.yu

described in (Sečujski, Delić, 2006). This approach has
proved to produce reasonably correct stress pattern, with
word error rate 2,8% for Serbian language. No equivalent
tests have been carried out for either Croatian or Mace-
donian so far. The synthesized speech in all three langua-
ges is highly intelligible and reasonably natural-sounding,
much more than any other attempts at speech synthesis in
Serbian, Croatian and Macedonian so far. An objective
test showing the improvement in TTS quality introduced
by accent-based prosody is described in (Sečujski et al.,
2002).

For the development of a multilingual TTS, separate
speech databases are generally required for each language,
although the Serbian database is at the moment used for
Macedonian. This leads to a quite insignificant decrease in
speech quality, due to the fundamental similarity between
phonetic inventories of these two languages. The Mace-
donian speech database is expected to be recorded soon. If
phonetic inventories are similar enough, as is the case for
Serbian, Croatian and Macedonian language, it is
appropriate accentuation and appropriate pitch contours
that will make synthesized speech sound naturally, almost
regardless of the original language of the database.

As to speech signal synthesis, the concatenative
approach has been selected as the most promising. The
AlfaNum R&D team has recorded a large speech database
and labeled it using visual software tools specially
designed for that purpose. By keeping score of every
phone in the database and its relevant characteristics, use
of phones in less than appropriate contexts was avoided,
which further contributed to overall synthesized speech
quality. This synthesizer is not diphone-based as almost
all other speech synthesizers developed for related
languages are. The TTS engine can use larger speech
segments from the database, according to both phonetic
and prosodic requirements, and select them at runtime in
order to produce the most intelligible and natural-
sounding utterance for a given plain text (Beutnagel et al.,
1999).

The most significant application of this system so far
is anReader, a speech synthesizer for the visually
impaired that, combined with software known as screen-
readers, offers them complete independence in computer
access. The number of the visually impaired computer
users in Serbia has increased significantly since anReader
was presented for the first time, and its popularity in
Croatia and FYR Macedonia is also growing.

3. AlfaNum System for Automatic Speech
Recognition

The goal of ASR is to recognize spoken words in a
speech signal, independently of the speaker, the input
device, or the environment. A recognized sequence of
words WASR for a given acoustic observation sequence X
and all expected word sequences W is usually estimated
using Bayes rule:

WASR = argW max P(W|X) = argW max P(W)⋅P(X|W)
where P(W) is the language model estimated using n-

gram statistics and P(X|W) is the acoustic model
represented by a Hidden Markov Model (HMM), trained
using maximum likelihood estimation. HMM encodes the
acoustic realisation of speech and its temporal behaviour,
while prior probabilities for word sequences P(W) lead to
a choice of the word sequence hypothesis with the

maximum posterior probability given the models and
observed acoustic data. The best word sequence WASR is
computed using a pattern recogniser based on a standard
Viterbi decoder. A conventional approach to front-end
signal processing of 30 ms frames, every 10 ms, results in
a feature vector X that captures primarily spectral features
of the speech signal estimated as cepstrum and energy,
along with their first- and second-order time derivatives.
A finite vocabulary defines the set of words (sequences of
phone units) and phrases that can be recognised by the
speech recogniser. The size of the recognition vocabulary
plays a key role in determining the accuracy of a system,
typically measured in Word Error Rate (WER), including
insertion, deletion, and substitution errors.

R&D for Serbian, Croatian and Macedonian ASR has
been concentrated on four aspects that define the quality
of a speech recognition technique (Gilbert et al., 2005):
§ Accuracy – WER is less than 5% for small and medi-

um-sized vocabulary continuous ASR; it is achieved by
developing acoustic models trained with 40 hours of
speech database; good results for large vocabulary
continuous ASR in these languages are expected when
a more complex language model and more comprehen-
sive post-processing are implemented.
§ Robustness – channel distortions are compensated by

CMS (Cepstral Mean Subtraction), background noise
spectrum is subtracted and speaker variations are
treated by gender separation and speaker adaptation
based on VTN (Vocal Tract Normalization).
§ Efficiency – long work on software code optimization

has resulted in fast decoder and small memory
footprint. The ASR engine consumes 2% or more of
CPU time on a Pentium IV PC, depending on
vocabulary size.
§ Operational performance – The ASR engine gives a

useful confidence scoring and implements barge-in
capability, improving operational performance. On the
other hand, features such as rejection of out-of-
vocabulary speech have not yet been enabled.
Due to the complexity of the problem, a system for

isolated word recognition in Serbian language was
developed initially. It was later upgraded into a system for
connected word recognition. Eventually a system for
continuous speech recognition (CASR) was developed,
based on recognition of phonemes in particular contexts.
An elementary HMM model is a triphone model, repre-
senting a phoneme in a particular left and right context. In
case there are too few instances of a triphone in the
database, model-tying procedures are performed (Pekar,
2002). The advantage of phoneme-based approach is that
users can define an arbitrary set of words (vocabulary) for
each recognition at initialization time. The system takes
into account lexical stress (particularly vowel length),
assigning greater significance to stressed vowels at
recognition time.

This system can be used for speech recognition in all
three aforementioned languages because it is phoneme-
based and because of the similarity of phonetic inventories
of these three languages. No significant drop in
performance for languages other than Serbian has been
observed, but actual experiments will be carried out as
soon as adequate ASR speech databases in Croatian and
Macedonian are available.

Even state-of-the-art ASR systems cannot be succes-
sful enough if they are based on acoustic features only. In

order to achieve natural dialogs in speech applications,
AlfaNum ASR has to apply some post-processing such as
Spoken Language Understanding (SLU), as well as a lot
of experience in both machine learning and design of
front-end technology. The goal of SLU is to extract the
meaning of recognized speech in order to identify a user’s
request. Dialog Manager (DM) evaluates the SLU output
in context of the call flow specifications, which results in
dynamic generation of the next dialog turn. The DM may
apply a range of strategies to control dialog flow
according to different application tasks. To provide a
successful dialog progress, intelligent speech applications
have to handle problematic situations caused by system
failures or absence of concise or accurate information in a
speech utterance. Post-processing makes it viable to adopt
natural language dialog applications without having to
achieve perfect recognition accuracy and without dictating
what a user should say.

4. API for AlfaNum ASR and TTS
So far we have elaborated some general features of

recognizer and synthesizer (ASR and TTS engine) and
their capabilities. However, in order to be able to integrate
ASR and TTS engine into a specific application, it is
necessary to implement appropriate interfaces. Depending
on the application and programming language in which it
was designed, one of the forms of the application pro-
gramming interface (API) is chosen.

For that reason, several versions of interfaces to the
software component have been implemented, and a
potential application designer can decide which one to
use. Among other interfaces, standard MS SAPI4 and MS
SAPI5 interface (speech APIs proposed by Microsoft)
have been implemented. The full compatibility of ASR
and TTS engines with MS SAPI4 and MS SAPI5 means
that any application can access ASR and TTS engines via
SAPI functions. Other interfaces implemented include a
custom C++ library, socket communications and COM
interface.

4.1. API for AlfaNum ASR
As mentioned above, AlfaNum ASR works with small

and medium vocabularies. In order to make the system
recognize specific words, a grammar must be defined.
This is accomplished using regular expressions, which
will be explained later. It is clearly possible to define
several grammars and to decide which one to use for
recognition at each moment. A specific way how to do
this depends on the interface used. The input of the
recognizer always consists of the speech signal and the
name of the grammar. The output consists of two arrays.
The first one is the array of recognized words (strings),
such as ['DAJTE', 'MI', 'LOKAL', 'TRI', 'PET', 'DVA'].
The second one is the array of numeric values, each of
them defining the reliability of recognition of the
corresponding word, i.e.: [93.1, 73.2, 90.0, 86.7, 91.2,
93.5]. Reliability values lie in the range 0-100. The exact
format of these arrays depends on the interface applied.

Grammars are defined using Backus-Naur form which
will be explained through an example.

Let us consider a grammar designed for recognition of
a telephone extension number. In this grammar a user can,

but does not have to, say the word "lokal" (extension), and
after that a sequence of digits is expected. Before and after
any speech activity some noise can occur, and the entire
spoken sequence is optional (i.e. the user can stay silent).

digit = NULA | JEDAN | DVA | TRI | CHETIRI
| PET | SHEST | SEDAM | OSAM | DEVET;
lokal = LOKAL;
gr = <gar>;
main = [$gr] [[$lokal] <$digit>] [$gr];

Several elements can be observed:
variables – digit, lokal, gr, main. Variable "main" is

the only reserved word and denotes the main sequence,
i.e. what is to be recognized. For that reason it is defined
at the end. Other variables can be referenced in any of the
following definitions, which can be accomplished by
using the prefix "$".
§ mark "|" – denotes a choice. The recognizer will

choose one of all given words.
§ angle brackets "<>" – surrounded sequence can

occur once or several times.
§ square brackets "[]" – denotes an optional

sequence. The recognizer can pass through this
word (or the whole rule), or skip it.

§ reserved word "gar" – denotes noise model used
for noise itself as well as some sounds that could
be produced by the speaker but are not qualified as
orthographic words.

4.1.1. AlfaNum ASR Server
All interfaces which will be mentioned here rely on

ASR server, which contains the recognition engine. All
client applications communicate with the server over the
IP protocol. This enables remote access to the server and
distribution of multiple ASR servers (implemented on
several computers) in case there is a need for large
number of simultaneous recognitions. All interfaces first
connect to the server, then send a command and wait for a
response. Commands are usually recognition requests,
although the protocol supports many other commands as
well.

An application designer can always use low level IP
communication with server. However, we have developed
a higher level library in C++, enabling fully functional
communication with the server using a very small number
of functions, with no need for low level protocol details.
The library contains the following functions and fields:
§ void AddHost (const string &host_name, float

host_load) – adds computer host_name to the list
of computers having ASR server capabilities.
host_load represents the load coefficient of a
particular server. Servers will be used according to
these coefficients.

§ void Connect () – connects to ASR server.
§ void Disconnect () – disconnects from ASR server.
§ void RecognizeFromFile (const string

&grammar, const string &file_name, float
timeout_s) – Recognizes the utterance recorded in
the file file_name in accordance with grammar.
The result is stored in fields results and
reliabilities.

§ void AddGrammarAsync (const string &name,
const string &grammar_file_name, const string
&transcriptor, const string &pronunciation,
const string &postprocessor, int timeout_s = -1)

– Starts a process of adding a new grammar named
name, defined in the file file_name. Since this
operation can be time-consuming, the process is
asynchronous in order to avoid the client being
blocked during initialization.

§ vector <string> results – string vector with results
of the last recognition.

§ vector <float> reliabilities – float vector with
values denoting reliability of the latest recognition.

The COM interface is similar to the C++ interface, but
it contains a set of methods and properties which can be
used in virtually any programming language. Most
descriptions of functions and properties are the same as
the ones given for the C++ interface:
§ AddHost(host_name As String, host_load As

Single)
§ Connect ()
§ Disconnect ()
§ RecognizeFromFile(grammar As String,

file_name As String , timeout_s As Double)
§ GetRecoResults As RecoResults – returns an

object of RecoResults type, with a string array
containing spoken words.

§ GetResultsReliabilities As ResultsReliabilities –
returns an object of type ResultsReliabilities
which contains reliabilities of recognized words.

Microsoft SAPI5 interface also relies on the ASR
server, and on the client side contains methods and
properties defined in MS SAPI5 standard. All details on
this standard can be found at www.microsoft.com/speech.

4.2. API for AlfaNum TTS
The basic functionality of the AlfaNum TTS system is

to transform an input text into speech. Textual input is
usually an unicode string, while the output is usually a
wav file. Beside this basic functionality, it is possible to
set other input parameters such as pitch, speed, speaker,
accentuation manner, etc.

It is possible to obtain an audio stream from the
synthesizer, which means that the client side can get parts
of audio signal even before the whole text has been
processed. In this way, delays are much shorter than in
case the signal is available only after the whole synthesis
has been completed.

All interfaces which will be mentioned rely on TTS
server. It contains text-to-speech engine, and client appli-
cations communicate with the server over the IP protocol,
in a way rather similar to the ASR server.

An efficient C++ library for communication with the
server was developed, similar to the one developed for
communication with ASR server. Examples of TTS-
specific functions and fields are given below:
§ void Synth (const string &file_name, const

wstring &text, int timeout_s) – synthesizes
sentence given in unicode string text and puts it in
the file file_name.

§ float speed – defines the speed of the synthesized
speech.

§ float pitch – defines the pitch of the synthesized
speech.

§ string speaker – defines the speaker to be used for
synthesis.

§ bool read_punctuation – defines if punctuation
marks should be read out.

§ bool read_abbreviations – defines if abbreviat-
ions should be spelled.

§ bool letter_by_letter – defines if the entire text
should be spelled.

§ bool prosody_override – defines if the user is
allowed to specify his/her own preferred accent-
uation of a specific word.

§ bool character_substitution – defines if, in the
absence of letters with diacritics (č, ć, š, ž...), there
should be an attempt to replace them with
appropriate letters with diacritics.

Examples of methods and properties of the COM TTS
interface as well as the Microsoft SAPI4 and SAPI5
interface are the same as for the ASR server, with addition
of TTS-specific methods and properties related to the
functions and fields given above.

5. Conclusion
Two speech technologies developed for the Serbian,

Croatian and Macedonian language have enabled two-way
communication between humans and machines in these
languages. This communication can be direct or remote
(e.g. via telephone), which introduces the possibility of
building speech-enabled intelligent systems. This is a step
of a human-to-machine interface in the regions where
these languages are spoken from touch-tone prompts
toward multimedia and multimodal interface. While both
these technologies are still under development, they are
already implemented in many commercial applications,
and are also in wide use as aid for people with visual
disabilities in Serbia, Croatia, Bosnia-Herzegovina and
FYR Macedonia. Owing to a number of interfaces
developed as well as appropriate reference manuals, these
software components can be used by third party
programmers who want to develop their own speech-
enabled applications.

6. References
Beutnagel, M., Mohri, M., Riley, M., 1999. Rapid Unit

Selection from a Large Speech Corpus for Concatena-
tive Speech Synthesis. In Proc. of EUROSPEECH’99,
Budapest, 607-610.

Dutoit, T., 1997. An Introduction to Text-to-Speech
Synthesis. Dordrecht: Kluwer academic publishers, 149-
152.

Gilbert, M.; Wilpon, J. G.; Stern, B.; Di Fabbrizio, G.,
2005. Intelligent Virtual Agents for Contact Center
Automation, IEEE Signal Processing Magazine, Vol.
22, 5:32-41.

Pekar, D.; Obradović, R.; Delić, V., 2002. AlfaNumCASR
– a system for continuous speech recognition. In Proc.
of 3rd Conference DOGS, Bečej, Serbia, 49-56.

Sečujski, M., Obradović, R., Pekar, D., Jovanov, Lj., and
Delić, V., 2002. AlfaNum System for Speech Synthesis
in Serbian Language. In Proc. of 5th Conf. Text, Speech
and Dialogue, Brno, 8-16.

Sečujski, M., Delić V., 2006. A software tool for semi-
automatic part-of-speech tagging and sentence accentu-
ation in Serbian language. In Proc. of IS-LTC,
Ljubljana.

www.microsoft.com/speech
www.microsoft.com/downloads, Speech SDK 5.1

http://www.microsoft.com/speech
http://www.microsoft.com/speech
http://www.microsoft.com/downloads

