
SPIN: A Semantic Parser for Spoken Dialog Systems

Ralf Engel

DFKI GmbH
Stuhlsatzenhausweg 3, Saarbrücken, Germany

ralf.engel@dfki.de

Abstract
This paper presents SPIN, a semantic parser developed for spoken dialog systems. The parser provides a powerful rule language for an
easy and efficient creation of the rule set. Important features of the rule language include order-independent matching, built-in support
for referring expressions, rule ordering, constraints andaction functions. On the basis of an example utterance the advantages of the
introduced features are shown. The increased processing complexity caused by the powerful rule language is handled by anew parsing
approach that delivers sufficient performance for rule setsthat are typical for dialog systems. We also show how the parser can be used
for text generation. The paper closes with an evaluation of the parser performance showing that the approach is well suited for dialog
systems.

SPIN: Pomenski parser za sisteme govorjenega dialoga
V članku je predstavljen SPIN, semantični razčlenjevalnik, ki je bil razvit za sisteme govorjenega dialoga. Razčlenjevalnik ima zmogljiv
jezik za tvorjenje pravil, ki enostavno in učinkovito tvori nabor pravil. Pomembne značilnosti jezika za tvorjenje pravil so ujemanje
ne glede na besedni red, vgrajena podpora referenčnim izrazom, razvrstitev pravil, omejitve in opravilne funkcije. Na podlagi primera
izjave so prikazane prednosti vpeljanih lastnosti. Povečana kompleksnost procesiranja zaradi zmogljivega jezika za tvorjenje pravil
obvladujemo z novim pristop k skladenjski analizi, ki ima zadosten učinek pri naboru pravil, značilnih za sisteme dialoga. Prikažemo
tudi, kako je lahko parser uporabljen za tvorjenje besedila. Članek zaključimo z vrednotenjem delovanja parserja, ki pokaže, da je pristop
primeren za sisteme dialoga.

1. Introduction
This paper presents SPIN, a semantic parser which is

especially designed for spoken dialog systems. The parser
operates directly on typed feature structures whereby the
available types and features are taken from the system-wide
ontology. A syntactic analysis of the input utterance is not
performed, but the ontology instances are created directly
from word level. The typical advantages of such an ap-
proach are that processing is faster and more robust against
speech recognition errors and disfluencies produced by the
user, and the rules are easier to write and maintain. Also,
multilingual dialog systems are easier to realize as a syn-
tactic analysis is not required for each supported language.
A disadvantage is that the complexity of the possible utter-
ances is somewhat limited, but this is acceptable for most
dialog systems.

Most semantic parsers use as underlying formalisms
context free grammars (CFGs), e.g., (Gavaldà, 2000) or fi-
nite state transducers (FSTs), e.g., (Potamianos and Kuo,
2000) or variants of them, e.g., (Ward, 1991; Kaiser et al.,
1999). The SPIN parser uses a more powerful rule lan-
guage to simplify writing of rules and to reduce the amount
of required rules.

Properties of the rule language include:

• Direct handling of nested typed feature structure is
available, which is important for processing more
complex utterances.

• Order-independent matching is supported, i.e., the or-
der of matched input elements is not important. This
feature helps processing of utterances in free word
order languages, like German, Turkish, Japanese,
Russian or Hindi, and simplifies writing of rules that

are robust against speech recognition errors and dis-
fluencies produced by the user.

• Built-in support for referring expressions is available.

• Regular expressions are available. Formulating the
rules in a more elegant way is supported by this fea-
ture whereby the amount of required rules is reduced.
Furthermore, writing of robust rules is simplified.

• Constraints over variables and action functions are
supported providing enough flexibility for real-world
dialog system. Especially, if the ontology is devel-
oped without the parsing module in mind, flexibility is
highly demanded.

SPIN’s powerful rule language requires an optimizing
parser, otherwise processing times would not be acceptable.
Principally, the power of the rule language avoids the devel-
opment of a parser which delivers sufficient performance
for an arbitrary rule set. Therefore, the parser is tuned for
rule sets that are typical for dialog systems. A key feature to
achieve fast processing is pruning of results that can be re-
garded as irrelevant for further processing within the dialog
system.

Currently, the parser is used in the SMARTWEB project1

(Wahlster, 2004). Earlier versions were successfully used
in the MIAMM project (Reithinger et al., 2005) and the
SmartKom project (Reithinger et al., 2003). SMARTWEB

is a multimodal dialog system whose purpose is to provide
a mobile and unified access to semantic databases, web
services and internet search. The semantic databases in-
clude a database containing information about current and

1
http://www.smartweb-project.org

previous football World Cups, the web services include,
among others, information about POIs (point of interests),
weather forecast, route planning and traffic information.
Supported languages are German and English (with a re-
duced functionality). SMARTWEB is a joint project of sev-
eral industrial and academic partners mainly located in Ger-
many. A client-server architecture is used whereby the
clients are ordinary smartphones or special onboard-units
built into motor-bikes or cars. The clients are connected
to the server via UMTS or WLAN. The multimodal recog-
nizers, the dialog system, and the access subsystems are
located on the server. All modules communicate using ei-
ther XML messages based on the EMMA standard2 or RDF
messages based on the system-wide used ontology SWIntO
(SmartWeb Integrated Ontology)3 (Cimiano et al., 2004).
SWIntO combines the DOLCE ontology (Gangemi et al.,
2002) and the SUMO ontology (Niles and Pease, 2001)
and contains also domain specific classes, properties and
instances.

The paper is structured in the following way: Section
2 presents the rule language, section 3 contains a process-
ing example, section 4 describes the parsing approach, and
section 5 discusses how the parser can also be used for text
generation. Section 6 reports on an evaluation of the pars-
ing performance.

2. Rule language
2.1. Working memory

The rules operate on a working memory (WM) which
consists of typed feature structures. The allowed types and
features are extracted from the system-wide ontology, e.g.,
SWIntO in the SMARTWEB system, plus an additional type
Word for representing words.

The top types are automatically extended with internal
features which are defined in a reserved namespace. A list
of the available internal features is shown in table 1.

The WM is initially filled with instances of the type
Word representing the recognized words. The typeWord

has the predefined featuresorth (for the orthography of
the word),stem andpos (part of speech). The features are
filled by a lexicon lookup. If a feature is not provided in the
lexicon, it remains unspecified.

2.2. Rule format

Like in classic rewriting systems, each rule consists at
least of a set of conditions matching elements in the WM
and a set of actions replacing the matched elements. Fur-
thermore, constraints over the content bound to variables
and processing options can be specified.

2.2.1. Conditional part
The conditional part consists of one or more condi-

tions. Default mode is order-independent matching, i.e.,
the order within the WM and the featuresleftMargin
andrightMargin are ignored. Order-independent match-
ing simplifies the writing of rules for free-word order lan-
guages and the writing of rules that are robust against

2
http://www.w3.org/TR/EMMA

3
http://www.smartweb-project.org/ontology en.html

Feature Description

leftMargin the index of the leftmost word

rightMargin the index of the rightmost word

words contains the input words used to create
this instance

syn contains syntactic information, like
gender, number and case

scoreClass contains the class used for scoring

score contains the score (used in combination
with scoreClass)

Table 1: List of internal features which are added automat-
ically to each top type.

speech recognition errors and disfluencies produced by the
user. Order-dependent matching can be activated by using
square brackets. In this case, the values ofleftMargin

andrightMargin are considered.
A single condition checks if an instance within the WM

is of a certain type and if the specified features are also set
in the tested instance. The type test considers the type hi-
erarchy specified in the system-wide ontology. The tested
type of the instance in the WM may be a subtype of the type
in the condition, but also a supertype. The latter supports
processing of referring expressions. For example, a pro-
noun can be mapped to a general type representing objects,
like PhysicalObject in the SMARTWEB project. If the
matched instance is inserted again in the WM, the type is
refined to the type of the condition. The refined type can
support reference resolution if several candidates are avail-
able in the dialog history.

Substructures within the conditions can be associated
with variables. The variables can be reused in the con-
straints and in the action part. Within the conditions, dis-
junctions and negations are possible.

A test on an instance representing a word can be ab-
breviated with the orthography of the word. This test is
replaced internally with a test on the stem. This avoids that
individual rules must consider inflectional variants, a spe-
cial advantage for languages with a rich usage of inflections
like German.

An example for a condition that tests on the country
with the name Brazil and assigns the name to the variable
N is

Country(name:$N=Brazil)

2.2.2. Constraints
Constraints enable additional tests on the content bound

to variables. Some built-in constraints are already available,
but it is also possible to add user defined constraints.4 Built-
in constraints include a constraint that checks if the content
is exactly of the specified type, ignoring the type hierar-

4User defined constraints have to be written as Java classes
which have to be specified in the configuration options of the
parser.

chy (!isTypeOf)5, a constraint that checks if the words
responsible for the content satisfy the specified syntactic
property (!syn) and a constraint that checks if the content
contains a specified substructure (!contains).

An example for a constraint that checks if the content
bound to the variable$V contains an instance of the type
Country is

!contains($V,Country())

2.2.3. Action part
The action part specifies the elements which replace the

matched elements in the WM. Possible elements in the ac-
tion part are typed feature structures, variables and action
functions. Action functions allow to post-process the con-
tent bound to variables.

Available built-in action functions include a function
that acts differently in cases where a specified variable is
bound or not (@if)6, a function that insert a specified syn-
tactic property (@syn) and functions that provide string op-
erations (@concat, @toUpperCase).

An example for an action inserting an instance of the
typeCountry with the featurename set to the value of the
variable$N in upper case is

Country(name:@toUpperCase($V))

2.2.4. Processing options
Processing options include an option that the test is not

performed only on top level, but also within embedded in-
stances (∼deepMatch), an option that a rule is always ap-
plied optional (∼opt), and the possibility to specify an or-
dering label. The ordering label can be used to force that a
rule is applied before or after other rules. This allows, e.g.,
to write clean-up rules that are performed when parsing is
finished.

3. Processing example
In this section, we will demonstrate how the SPIN

parser can be used to process the utteranceWie spielte
diese Mannschaft gegen Brasilien? (How did this team play
against Brazil?).7

The countryBrasilien (Brazil)is handled by the follow-
ing rule8:

(R1) Brasilien

→ Country(name:BRAZIL)

The queried database is language independent and uses
English identifiers in uppercase. Therefore, the country
name has to be set toBRAZIL.

In our domain, a country name can stand for a national
football team stemming from that country. A rule performs
this transformation:

(R2) ∼opt $C=Country()

→ FootballNationalTeam(origin:$C)

5All constraints are prefixed with!.
6Action functions are prefixed with@.
7As processing of free-word order phenomena should be

shown, the example utterances are in German.
8The expression(RX) is not part of the rule and is only used

for referring purposes.

As the country instance is used also in its original mean-
ing, the rule is marked as optional (∼opt). Otherwise, the
parser optimizations may cause that the solution without
the rule being applied is not produced.

The wordMannschaft (team)is simply mapped to an
empty instance of the typeTeam.

(R3) Mannschaft → Team()

The next rule handles the determinerdieser (this).

(R4) [dieser $O=PhysicalObject()]

→ $O(lingInfo:RefProp(type:def,

gender:@syn($O,gender),

number:@syn($O,number)))

In this case, the order of the matched elements is rel-
evant, so order-dependent matching is activated, indicated
by the square brackets. This rule exploits the hierarchy of
the system-wide used ontology as all objects that can be re-
ferred to inherit from the typePhysicalObject. In the
SMARTWEB system, the reference resolution module uses
gender and number as a criterion to find a suitable refer-
ent. The action function@syn examines the words that
have been used to create the instances bound to the spec-
ified variables and computes the specified featuresgender

andnumber. The corresponding entry in the lexicon is

Mannschaft,syn:female-singular

Although not required for processing of the example ut-
terance, we present a rule processingsie (it in this case) to
show how pronouns are processed.

(R5) sie

→ PhysicalObject(lingInfo:RefProp(

type:det, gender:female,

number:singular))

Questioned instances are marked in the SMARTWEB

query language with a variable that contains the requested
media type; it is also possible to asked explicitly for images
or videos. The rule processingwelches (which)is

(R6) [welches $PO=PhysicalObject()]

→ $PO(var:Variable(

focus:Text()))

A corresponding rule forwann (when)is

(R7) wann

→ TimePoint(var:

Variable(focus:Text()))

The verb phrasewie spielte<Team1> gegen<Team2>
(how did<Team1> play against<Team2>) is handled by
the rule

(R8) %wie spielte $T1=Team()

%[gegen $T2=Team()]

%[%bei $T=Tournament()]

%$TP=TimePoint()

%[%in $R=TournamentRoundStage()]

→ Match(team:T1, team:T2,

tournament:$T,

inRound:$R,

@if($TP,happensAt:

TimeInterval(begins:$TP)))

This rule is able to integrate further information, like
a specified tournament, a time point or a round stage like
final. The additional information is matched by optional
conditions, indicated by the prefix%.

Besides our example utterance, this single rule (together
with other preprocessing rules for tournaments, rounds,
etc.) can process a lot of other utterances including

Wie spielte Brasilien im Finale 1990?
(How did Brazil play in the 1990 final?)

Wie spielte Brasilien bei der WM in Spanien?
(How did Brazil play at the World Cup in Spain?)

Gegen welche Mannschaften spielte Brasilien
bei der WM 1974?

(Which teams did Brazil play against at
the World Cup 1974?)

Wann spielte Brasilien gegen Frankreich?
(When did Brazil play versus France?)

Covering such a variety of utterances with a single rule
is only possible because the rule language supports op-
tional conditions and mixing of order-dependent and order-
independent matching.

In addition, order-independent matching makes
processing more robust against speech recognition errors,
as misrecognized words can be simply skipped in many
cases. If the recognition errors affect only words which
are not essential for the understanding of the utterance, the
utterance can be analyzed at least partially. Examples are:

spielte diese Mannschaft gegen Frankreich?
(did this team play against France?)
(Wie (How)was not recognized)

Wie spielte Brasilien Frankfurt 1990?
(How did Brazil play Frankfurt 1990?)
(im Finale (in the final)was misrecognized asFrankfurt)

As the query module for the semantic database of the
World Cup data expects that at least one instance is marked
as questioned, a cleanup rule checks whether an embedded
instance is marked as questioned and adds the dialog act
Question. If this is not the case the matched instance itself
is marked as questioned (second rule):

(R9) cleanup1: $M=Match()

!contains($M,Variable())

→ Question(content:$M())

(R10) cleanup2: $M=Match()

→ Question(content:$M(var:

Variable(focus:Text())))

In the configuration options of the parser, it is speci-
fied that rules marked with the ordering labelcleanup1

are applied before rules marked with the ordering label
cleanup2.

A rule that handles general utterances likebitte (please)
is

(R11) cleanup3: bitte $D=DialogAct()

→ $D(mode:polite)

Due to order-independent matching this works also ifbitte
is placed in the middle of the utterance, e.g.,

wie spielte bitte diese Mannschaft gegen Brasilien
(Please, how did this team play against Brazil?)

The generated result structure for the utterancewie spielte
diese Mannschaft gegen Brasilienis finally

Question(content:Match(

var:Variable(focus:Text()),

team:Team(lingInfo:RefProp(

gender:female, number:singular))

team:Team(origin:Country(

name:BRAZIL))))

4. Parsing algorithm

In this section, the main ideas of the parsing algorithm
are presented, a more detailed description can be found in
(Engel, 2005).

4.1. Parsing challenge

Fast CFG parsing approaches likeEarley parsingor
Tomita’s parsing approachcannot be used because SPIN’s
rule language allows order-independent matching. (Huynh,
1983) has shown that parsing of rule languages that support
order-independent matching is NP-complete.

Typically, parsing algorithms are optimized to avoid the
generation of multiple identical (intermediate) results and
intermediate results that cannot be further processed. The
first issue can be addressed using a chart, the second one
using top-down predictions.

But the main problem in parsing rule languages which
support order-independent matching is that most of the
generated WMs are irrelevant for further processing in
other modules within the dialog system as they contain un-
processed elements. The basic idea of the presented ap-
proach is to avoid the generation of as many irrelevant re-
sults as possible. Two starting points have been discovered:

(1) For many rules it is not appropriate to be applied be-
fore some other rules, as in this case irrelevant results are
generated. An example is the application of rule (R8) be-
fore rule (R4) is applied. The problem is thatdieses (this)
is not integrated and, even worse, the word cannot be inte-
grated later on, as the instanceFootballNationalTeam
is embedded after the application of rule (R8) and therefore
unreachable for rule (R4). To overcome this problem, the
idea is to order the rules offline, so that rule (R4) is applied
before rule (R8).

(2) In many cases, the original WM can be deleted after
the application of a rule. In a standard bottom-up parser,
the result of a rule application is always added to the al-
ready existing set of alternative WMs. This is necessary as
otherwise relevant results may not be generated. But if al-
ternative rules do not exist, maintaining the original WM is
not necessary. So the idea is to detect offline which rules
can match the same input and to maintain only the original
WM in these cases. All other rules are marked as destruc-
tive, i.e., the original WM is deleted after the applicationof
that rule. As the presented example rules are not ambigu-
ous, all rules are marked as non-destructive with the excep-
tion of rule (R2) which is marked explicitly as optional.

R1

R2

R3 R5

R4 R6 R7

R8

R9 R10 R11

Figure 1: The generated dependency graph for the rules
(R1) to (R11). One cycle exists containing rules (R4) and
(R5). Transitive transitions are omitted.

4.2. Realization

First, the rules are ordered using a dependency graph.
Therefore, each rule is compared with all other rules. If
rule A creates instances that can be processed by rule B, a
dependency transition is inserted between rule A and rule
B. After all rules have been processed, the rules are lin-
earized by walking through the graph and assigning each
rule an application number.

Before the dependency graph is linearized, the graph is
checked for cycles. A cycle means that a rule A can process
the result generated by a rule B, but rule B can also process
the result generated by rule A. If a cycle is detected, all
rules of that cycle get the same application number. Rules
with the same number are applied in a loop until none of
the rules can be applied anymore.

After the rules are ordered, each rule is examined if it
is in ”competition” with at least one other rule applied af-
terwards. If this is the case, the rule is marked as non-
destructive, i.e., the original WM is kept in the set of al-
ternative WMs, otherwise the rule is marked as destructive,
i.e., the original WM is deleted from the set of alternative
WMs.

If a rule A is in competition with a rule B depends on
the following: The application number of rule A has to be
greater or equal than the application number of rule B, and
a WM must exist so that rule A and rule B can be applied
to that WM, and at least one element of the WM is matched
by both rules. The algorithm to detect if two rules can
match partially the same input is quite complex and is not
described in this paper.

Figure 1 shows the constructed dependency graph for
the rules used in section 3.

5. Text generation
When the development of the parser was started, using

the parser as part of a text generation module was not in-
tended. But the parser has proven as flexible enough to
support this task. An early version of the text generation
module called NipsGen9 is already used in the SMARTWEB

project. The SPIN parser is used in combination with a
TAG (tree adjoining grammar) module (Becker, 2006). The
TAG grammar of this module is derived from the XTAG

9Nips in the name NipsGen stands for the reverse usage of
SPIN parser, Gen stands for generation.

grammar for English developed at the University of Penn-
sylvania10.

The input of the generation module is the result of a
query and is represented as an instance of SWIntO. The
input is transformed to a text string in three steps:

1. A derivation tree for the TAG-grammar is created us-
ing SPIN rules which are applied on the semantic input
structure.

2. The actual syntax tree is constructed using the deriva-
tion tree. After the tree has been built up, the features
of the tree nodes are unified.

3. The correct inflections for all lexical leafs are looked
up in a lexicon. Traversing the lexical leafs from left
to right generates the text string.

The focus of the further description is put on the first
step, the creation of the derivation tree.

A direct generation of the TAG tree description would
lead to too complicated and unintuitive rules. Instead, the
generation process is split into two phases. First, an inter-
mediate representation is built up on a phrase level. This
phase is domain dependent. In a second step, the interme-
diate description is transformed to a derivation tree. The
intermediate layer is domain independent and therefore the
transformation rules for the second part are also domain in-
dependent.

The generation of a text string is illustrated by the input
structure

VP(o:Match(

team1:FootballNationalTeam(origin:

Country(name:GERMANY))

team2: FootballNationalTeam(origin:

Country(name:BRAZIL))

result: "1:0"))

which should be verbalized as

Deutschland spielte gegen Brasilien 1:0
(Germany played against Brazil 1:0)

Two examplary rules of the first phase are presented. The
first rule produces the verb phrase (VP) withspielen (play),
the second one verbalizes the teams.

$VP=VP(o:Match(

team1:$T1,team2:$T2,

result:$R,not(lex:))

→ $VP(lex:spielen,

sub:NP(o:$T1),

pp:PP(lex:gegen,np:NP(o:$T2)),

adv:AdvP(lex:$R))

$NP=NP(o:FootballNationalTeam(origin:

Country(name:Brazil)),not(lex:))

→ $NP(lex:Brasilien)

In the second phase, the phrase structure is converted
to a derivation tree for the TAG grammar. Each tree in the
TAG grammar has a corresponding type in the ontology.

10
http://www.cis.upenn.edu/∼xtag/

The features of a TAG tree type represent the type of oper-
ation (adjunction (a), substitution (s), lexical replacement
(l)) and the position in the tree, e.g.,211.

An example for a rule transforming a verb phrase to the
intermediate representation to the TAG treeanCnx0VADJ

is

VP(lex:$L,sub:$S,adv:$A,%pp:$PP,%fvp:$F)

→ anCnx0V(

l 211:$L,

s 1:$S(fvp:Fvp(case:nom)),

a 221:$A,

a 222:@if($PP,$PP(mode:vpAdj)),

fvp:$F)

For text generation, the parser is driven in a slightly dif-
ferent mode: The automatic ordering of rules is switched
off, instead the order in which the rules are applied is taken
from the file containg the rules. Regions that have to be ap-
plied in a loop and rules that have to be applied optionally
are marked explicitly. In the current system, two loops ex-
ists, one for each phase. In cases where multiple solutions
should be produced, the alternative rules have to be marked
as optional.11

Currently, the generation module contains 179 rules for
the first phase and 38 rules for the second phase.

6. Evaluation of parsing performance

The rule set used for the SMARTWEB project consists
of 1069 rules where 363 rules are created manually, and
706 are generated automatically from the linguistic infor-
mation stored in SWIntO, e.g., country names. The lexicon
contains 2250 entries.

In the offline rule ordering 12 loops are generated with
an average size of 4.2 rules, the largest loop contains 20
rules. 242 rules are marked as non-destructive.

The parser is written in Java 1.5. We tested the perfor-
mance on a Pentium IV 3.2GHz computer with a test corpus
of 175 utterances with an average length of 6.5 words and a
maximal length of 13 words. The average processing time
was 45.9 ms, the largest one 183.4 ms.

7. Conclusion and outlook

In this paper we presented SPIN, a semantic parser pro-
viding a powerful rule language. After a short description
of the rule language, a processing example was provided
showing some of the advantages of the powerful rule lan-
guage. A parsing approach which provides fast processing
with rule sets that are typical for dialog systems was out-
lined, and the inclusion of the SPIN parser in the text gen-
eration module was presented. The evaluation of the pars-
ing performance shows that the parser provides sufficient
performance for real-world dialog systems.

The current research focus is on the development of
tools for efficient rule writing and maintaining, and on fur-
ther optimizations of the parser, like pruning of irrelevant
results caused by optional conditions.

11A separate component selects one of the generated solutions.

8. Acknowledgments
This research was funded by the German Federal Min-

istry for Education and Research under grant number
01IMD01A. The views expressed are the responsibility of
the authors. Points of view or opinions do not, therefore,
necessarily represent official Ministry for Education and
Research position or policy.

9. References
Becker, Tilman, 2006. Natural language generation with

fully specified templates. In Wolfgang Wahlster (ed.),
SmartKom: Foundations of Multi-modal Dialogue Sys-
tems. Heidelberg: Springer, pages 401–410.

Cimiano, Philipp, Andreas Eberhart, Pascal Hitzler, Daniel
Oberle, Steffen Staab, and Rudi Studer, 2004. The
smartweb foundational ontology. Technical report, In-
stitute for Applied Informatics and Formal Description
Methods (AIFB) University of Karlsruhe, Karlsruhe,
Germany. SmartWeb Project.

Engel, Ralf, 2005. Robust and efficient semantic parsing of
free word order languages in spoken dialogue systems.
In Proc. of Interspeech-2005. Lisboa.

Gangemi, Aldo, Nicola Guarino, Claudio Masolo, Alessan-
dro Oltramari, and Luc Schcneider, 2002. Sweetening
Ontologies with DOLCE. InProc. of EKAW02, volume
2473 of Lecture Notes in Computer Science. Sigünza,
Spain.

Gavaldà, Marsal, 2000. SOUP: A parser for real-world
spontaneous speech. InProc. of 6th IWPT. Trento, Italy.

Huynh, Dung T., 1983. Communicative grammars: The
complexity of uniform word problems.Information and
Control, 57(1):21–39.

Kaiser, Edward C., Michael Johnston, and Peter A. Hee-
man, 1999. PROFER: Predictive, robust finite-state pars-
ing for spoken language. InProc. of ICASSP-99, vol-
ume 2. Phoenix, Arizona.

Niles, Ian and Adam Pease, 2001. Towards a Standard Up-
per Ontology. In Chris Welty and Barry Smith (eds.),
Proc. of FOIS-2001. Ogunquit, Maine.

Potamianos, Alexandros and Hong-Kwang Kuo, 2000. Sta-
tistical recursive finite state machine parsing for speech
understanding. InProc. of 6th ICSLP. Beijing, China.

Reithinger, Norbert, Jan Alexandersson, Tilman Becker,
Anselm Blocher, Ralf Engel, Markus Löckelt, Jochen
Müller, Norbert Pfleger, Peter Poller, Michael Streit, and
Valentin Tschernomas, 2003. SmartKom - adaptive and
flexible multimodal access to multiple applications. In
Proc. of ICMI 2003. Vancouver, B.C.

Reithinger, Norbert, Dirk Fedeler, Ashwani Kumar,
Christoph Lauer, Elsa Pecourt, and Laurent Romary,
2005. Miamm: A multi-modal dialogue system using
haptics. In L. Dybkjaer and J. van Kuppevelt (eds.),Nat-
ural, Intelligent and Effective Interaction in Multimodal
Dialogue Systems. Kluwer.

Wahlster, Wolfgang, 2004. SmartWeb: Mobile Applica-
tions of the Semantic Web. In Peter Dadam and Manfred
Reichert (eds.),GI Jahrestagung 2004. Springer.

Ward, Wayne, 1991. Understanding spontaneous speech:
the Phoenix system. InProc. of ICASSP-91.

