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Abstract 

This paper presents our initial results in a new approach to vocal tract normalization (VTN). In experiments based on continuous 
automatic speech recognition (ASR) the VTN procedure is in general carried out in both training and test phase. In the training phase it 
is used to obtain speaker independent acoustic models of phones. In the test phase it is used to convert input observations into 
observations nearer to the ones corresponding to the universal speaker. The approach described in this paper is new, because instead of 
training a single set of acoustic models for the universal speaker, several sets of acoustic phone models corresponding to speakers with 
similar vocal tract lengths were created. Instead of using the VTN procedure in the test phase, the recognized sequence estimated as the 
most likely one among sequences based on different acoustic model sets was identified as the final recognition result. 
 

Normiranje vokalnega trakta na podlagi lege formantov 
V prispevku so predstavljeni začetni rezultati novega pristopa k normiranju vokalnega trakta (NVT). V eksperimentih, ki temeljijo na 
samodejnem razpoznavanju tekočega govora, se postopek NVT izvaja tako v učni kot v testni fazi. V učni fazi se uporablja za 
pridobivanje akustičnih modelov fonov, ki niso odvisni od govorca. V testni fazi se uporablja za pretvorbo vhodnih opažanj v 
opažanja, ki so bližja tistim, ki ustrezajo univerzalnemu govorcu. Pristop, ki je opisan v tem prispevku, je nov: namesto da bi učili 
posamezno množico akustičnih modelov za univerzalnega govorca, je bilo ustvarjenih več množic akustičnih modelov fonov, ki 
ustrezajo govorcem s podobno dolžino vokalnega trakta. Namesto uporabe postopka NVT v testni fazi je bil končni rezultat 
razpoznavanja prepoznano zaporedje, ki je bilo ocenjeno kot najbolj verjetno med zaporedji, temelječimi na različnih množicah 
akustičnih modelov. 
 

1. 

2. 

3. 

Introduction 
Most of today’s automatic speech recognition (ASR) 

systems are based on hidden Markov models (HMM). 
Acoustic variations between training and test conditions, 
caused by different microphones, channels, background 
noise as well as speakers, are known to deteriorate ASR 
performance. Speaker variations can be divided into 
extrinsic and intrinsic. Extrinsic variations are related to 
cultural variations among speakers as well as their emo-
tional state, resulting in diverse speech prosody features. 
Intrinsic variations are related to speaker anatomy (vocal 
tract dimensions) and they manifest in different formant 
positions of a given phoneme. Procedures for reducing 
variation caused by different vocal tract dimensions in 
feature domain are known as vocal tract normalization 
(VTN) procedures, whereas procedures in acoustic model 
domain are referred to as adaptation procedures.  

In this paper the improvements of the AlfaNum ASR 
system obtained by the VTN procedure will be presented. 
In section 3, a description of the corpus and features used 
is given. Section 4 contains a description of HMM model-
ing on phonetic level. A description of VTN procedures is 
given in section 5. Experiment results are presented in 
section 6, followed by conclusions in section 7. 

Goal of the paper 
Variations in vocal tract length are the main reason for 

diverse formant positions within a given phoneme spoken 
by different persons, hence formant based spectrum warp-
ing is more than reasonable. Unfortunately, this approach 
to VTN has several disadvantages: (i) formant positions 
are context dependent and could vary largely with differ-
ent context even for a single speaker; (ii) there are over-
laps between different formants across vowels spoken by 
various speakers; (iii) existing formant estimation tech-

niques are not robust enough. Zhan and Waibel (1997) 
showed that VTN based on formant positions did not 
result in any performance improvement, since formant 
frequency could not reflect difference in vocal tract length 
among speakers because they are calculated with an 
unconstrained context and there is no guarantee of phone 
balance in context among speakers (Zhan, Waibel, 1997). 
Exact phone boundaries can be used to avoid the problem 
of context dependency of formant positions only in the 
training phase, since they are not known in the test phase. 
In this approach exact phone boundaries are used in 
training phase to make clusters of speakers with similar 
vocal tract lengths. For each cluster of speakers a set of 
acoustic models is created. In the test phase the recog-
nized sequence estimated as the most likely one among 
sequences based on different acoustic model sets was 
identified as the final recognition result. Division of the 
training set into subsets i.e. speaker clusters would reduce 
the number of utterances per cluster and decrease robust-
ness of consequent acoustic models. In order to overcome 
this problem a warping procedure was used to extend each 
training subset with utterances spoken by speakers out of 
the cluster.  

Database and features 
The used corpus is a part of the Serbian SpeechDat 

database (Đurić, Pekar, Jovanov, 2002), containing only 
utterances spoken by male speakers. The corpus in this 
experiment is reduced only to those speakers for which at 
least 10 instances of each vowel could be found in the 
database in order to achieve good vocal tract length 
estimation for each speaker in the corpus. The Serbian 
SpeechDat database was recorded through the public 
switched telephone network and sampled at 8 kHz with 8-
bit A-law quantization. The training set contains 14496 
utterances spoken by 340 speakers. For testing system 



performance 2 test sets were used. The first test set 
contains 184 utterances spoken by 17 different speakers. 
No utterance spoken by any of these speakers is present in 
the training set. The second test set contains 435 
utterances spoken by 17 different speakers. Some of the 
utterances spoken by these speakers are present in training 
set but not the same ones. The feature vector which was 
used consists of 2 streams. The first stream contains 6 
energy coefficients: normalized energy, logarithm of the 
energy and their first and second derivatives. The second 
stream contains 36 coefficients (12 static, 24 dynamic), 
which describe spectral envelope and its changes in time. 
These 12 static coefficients describe spectral slopes, or 
more precisely, differences in energy between successive 
filter banks. Filter banks divide the Mel-scaled spectrum 
from 50 to 3800 Hz into 27 regions of equal width. Slopes 
are evaluated for every other filter bank starting from the 
third one. Spectral components below 300 Hz and above 
3400 Hz are given less relative importance because the 
AlfaNum ASR system uses telephone quality recordings 
where these components are distorted. The feature vector 
is estimated on 30 ms long segment. Overlapping between 
successive segments is 20 ms. 

4. 

5. 

Models 
For the purposes of this experiment, several changes 

into the phonetic inventory of the Serbian language had to 
be introduced. Instead of the standard 5 vowels in Serbian, 
two sets containing 5 long and 5 short vowels are taken 
into consideration (the boundary between the two being 
65 ms), and the phone /ə/ (IPA notation) is regarded as a 
standard vowel as well. The distinction based on vowel 
length is motivated by a need to model steady formant 
positions within long vowels better. Closure and explosion 
of affricates and stops are modelled separately and 
referred to as subphones. The basic modelling unit is a 
context dependent phone or subphone referred to as 
triphone. Silence and non-speech sounds present in the 
corpus are modelled as context independent units. 

The number of states per model is proportional to the 
average duration of all the instances of the corresponding 
phone in the database. The number of mixtures per state 
depends on the distribution of observations in the feature 
space and is determined dynamically. During the initial 
training the maximum number of mixtures and the mini-
mum number of observations per mixture are specified.  

Using triphones instead of monophones leads to a very 
large set of models and insufficient training data for each 
triphone. All HMM state distributions would be robustly 
estimated if sufficient observations were available for 
each state. This could be achieved by extending the train-
ing corpus or by including observations related to acousti-
cally similar states. The second solution was chosen as 
being less expensive, even though it generates some sub-
optimal models. More details about the tying procedure 
used can be found in (Jakovljević, Pekar, 2005). 

Formant estimation and the warping 
function 

Variations in vocal tract length are the main reason for 
diverse formant positions within a given phoneme spoken 
by different persons, therefore formant based spectrum 
warping is more than reasonable. Unfortunately, the 
existing formant estimation techniques are not robust 

enough. Some of the most frequent errors are: formant 
merging, shifting formant frequencies towards harmonics 
and false maximum caused by channel distortion (Gouvea, 
1998). The algorithm used for formant detection was the 
one described in (Welling, Ney, 1998). The algorithm 
does not perform sufficiently well for Serbian vowels /u/ 
and /i/. The first and the second formant of the vowel /u/ 
are in many cases very close to each other in the spectrum, 
and the algorithm can erroneously identify them as a 
single formant, thus the third formant is detected as the 
second. The first formant of the vowel /i/ is very low and 
in some cases attenuated by the channel, and the algorithm 
often identifies the peak in the range between 600 and 
1800 Hz as the first formant. This kind of error is caused 
by pre-emphasis, but omitting pre-emphasis would result 
in wrong formant positions for other vowels. Coarticu-
lation is known to cause formant transition in vowels. If 
the vowel is too short, positions of its formants cannot 
reach context neutral values. In order to reduce this type 
of variability, formant position estimation is based on the 
most reliable 50% of the frames of long vowels /a/, /e/ and 
/o/, which are those in the middle of the vowel. The results 
published show minor differences in performance for 
various VTN function types (Zhan, Westphal, 1997; 
Uebel, Woodland, 1999; Pitz, 2005). The linear function 
was chosen as the simplest one and applied in addition to 
the Mel-scale warping mentioned above. The most natural 
way to evaluate the frequency warping factor is as a mean 
value of the ratio of the universal and the current formant 
value, the universal formant value being the mean formant 
value for a given phone across all speakers. The frequency 
warping factor αc (i.e. linear function slope) for a given 
speaker can thus be estimated as follows: 
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where µil is the mean value of the i-th formant in the 
phone l across all speakers, and Filf is the current value of 
the i-th formant in the frame f of the phone l. This 
approach to warping factor estimation does not consider 
the possibility of false formant estimation. A more robust 
way to estimate αc is as follows: 
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where αf is the warping factor for the f-th frame, Filf  is 
the value of the i-th formant in the f-th frame, µil is the 
mean value of the i-th formant in the phone l, sil is the 
standard deviation for the i-th formant in the phone l, 
P{αf Filf |i,l} is the probability that frequency αf Filf is 
actually the i-th formant in the phoneme l, and αc is the 
warping factor for a given speaker. In the first stage for 
each frame, warping factor αf is evaluated as most 
probable warping factor for given vowel (Eq. 2). Under 
assumption that formant distribution across all speakers 
for a given vowel is Gaussian, Eq. 2 becomes Eq. 3. In the 
second stage the warping factor for a given speaker is 
calculated as the average value across all frames. Taking 
probability P{αf Filf |i,l} into account reduces formant 



estimation errors. This method could be performed only in 
the training phase, when phones and theirs boundaries are 
known. If the warping factor were calculated based on 
formant positions of only one formant of a single vowel, 
the reliability factor P{αf Filf |i,l} would be eliminated, 
reducing Eq. 4 to Eq. 1. 

6. 

6.1. 

Experiments 

Finding optimal features for warping factor 
estimation 

The first step of the experiment was finding optimal 
features for warping factor estimation. The search space 
contains different combinations of the first 3 formants (F1, 
F2 and F3) of the vowels /e/, /a/ and /o/. During the 
evaluation of the formant estimation algorithm, vowels /i/ 
and /u/ were identified as unreliable (about 40% of 
observed frames were incorrect). Instead of using an 
existing ASR system as a reference, a new one using the 
training corpus adapted for VTN purposes and described 
in section 2 was trained. Results are thus made inde-
pendent of the training corpus and none of the utterances 
of speakers whose utterances are present in the test set are 
used for acoustic models training. The grammar consists 
of 195 different words where 8 of them are not present in 
the VTN test set but are phonetically similar to some of 
the existing ones. The testing was carried out in a 
supervised mode to avoid errors caused by incorrect 
vowel recognition, because the aim of this step was to find 
optimal features (the set of formants) for reliable warping 
factor estimation and not to implement VTN procedure 
itself. In supervised mode phone boundaries are located 

manually. After appropriate warping factor evaluation for 
each speaker in the test set, the recognition is performed. 
The results of this phase of the experiment are presented 
in Table 1. The best system performance is achieved by 
warping factor estimation based on the second formant of 
the vowel /e/. Very similar performance is obtained if the 
warping factor is estimated based on the second formant 
of vowels /e/ and /a/ instead. Performance improvement 
comes mostly as a result of a decrease in the number of 
insertions. Reduction of Eq. 4 to Eq. 1 had no effect since 
reliability of formant estimation for phoneme /e/ is high. 
Since the vowel /a/ is the closest one to the neutral vowel 
/ə/, where each formant frequency is inversely propor-
tional to vocal tract length, it was expected that the VTN 
based on the formants of the vowel /a/ would produce the 
best results. However, this was not the case. The results 
obtained for the formants of the vowel /a/ show some 
interesting features. If a single formant (F1, F2 or F3) 
were used for warping factor estimation, or a combination 
of F2 and F3, the gain is far less than if all 3 formants (F1, 
F2 and F3) of the same vowel were used. A possible 
explanation is that during warping factor estimation based 
only on one formant of a single vowel, warping factor 
estimation is less reliable, as explained in section 5. It can 
be seen that experimental results are not very consistent. 
The system performance in case warping factor estimation 
is based on F2 of the vowel /a/ is somewhat inferior to the 
system performance in case the estimation is based on F3 
of the vowel /e/. On the other hand, the system with 
warping factor estimation based on F2 of vowels /e/ and 
/a/ performs significantly better than the system with 
estimation based on F2 and F3 of the vowel /e/. One can 
find further such examples in Table 1. The first formant 
turned out to be the least appropriate feature for warping 
factor estimation. A system with warping factor estima-
tion based only on the first formant shows serious degra-
dation of performance in comparison with the referent 
system in most cases, except for the vowel /a/. In the 
experiments described in (Gouvea, 1998), the system 
using warping factor estimation based on the first formant 
showed the least improvement, but the result was still 
better than if no VTN procedure had been used. For this 
reason the first formant was not used in any of the 
experiments, except in the case of the vowel /a/, because 
the ratio of its first three formant frequencies is always 
near to 1:3:5 and it can be shown that F1 contributes to the 
reliability of estimation of F2 and F3. The second formant 
has turned out to be the best feature for warping factor 
estimation. That was not unexpected, since it is known 
that professional impersonators move their F2 closer to 
the one of the target speaker, as it seems to be a very 
important feature of human speaker recognition 
(Blomberg, Elenius, Zetterholm, 2004). Unfortunately, 
variations among warping factors obtained in different 
ways are rather high. Fig. 1 shows the distribution of the 
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Figure 1. The histogram of the warping factor range

formant vowel false  ins del WER[%] 
reference system 47 37 0 20.90 
F2 /e/ 39 24 1 15.92 
F2 /a/ /e/ 38 27 1 16.42 
F1 F2 F3 /a/ 41 31 0 17.91 
F3 /e/ 43 29 1 18.16 
F2 F3 /e/ 42 30 1 18.16 
F2 F3 /a/ /o/ 44 30 0 18.41 
F2 /a/ /e/ /o/ 39 35 1 18.66 
F2 /a/ 46 31 0 19.15 
F2 F3 /a/ /e/ /o/ 43 34 1 19.40 
F3 /o/ 46 33 1 19.90 
F2 /e/ /o/ 44 35 1 19.90 
F2 F3 /a/ 49 32 0 20.15 
F1 /a/ 47 34 1 20.40 
F2 F3 /a/ /e/ 45 37 1 20.65 
F2 F3 /e/ /o/ 49 35 0 20.90 
F2 /a/ /o/ 47 37 0 20.90 
F3 /a/ 46 37 1 20.90 
F1 /e/ 50 43 1 23.38 
F2 F3 /o/ 55 56 0 27.61 
F2 /o/ 64 55 2 30.10 
F1 /o/ 71 52 0 30.60 

Table 1: System performances for different features for 
warping factor estimation 

 



differences between the maximum and minimum warping 
factor values for each speaker. This is the reason why for 
some feature combination VTN procedure did not result in 
any improvement. 

6.2. 

7. 

8. 

9. 

Vocal tract normalization 
A common method for improving performance is to 

use separate acoustic model sets for male and female 
speakers. Instead of creating an universal acoustic model 
set, 3 separate model sets were created, representing 
phones uttered by male speakers only. We intend to 
extend this approach to the models for female speakers. 
Any division of the training set into subsets would reduce 

the number of utterances per subset and decrease 
robustness of consequent acoustic models. In order to 
overcome this problem warping factors based on F2 of the 
vowel /e/ were used to extend each of the training sets. 
The histogram of warping factors for all speakers in the 
training set is shown in Fig 2. It can be seen that the best 
coverage of speakers in the training set can be obtained if 
the subsets of speakers with warping factor values 0.95, 1 
and 1.05 are chosen. In order to be able to include the 
utterances with an inappropriate warping factor in the 
training set, the spectrum of each such utterance should be 
scaled with the ratio of its own warping factor and the 
target warping factor. 

The comparative performance is presented in table 2. 
In this experiment the most successful set of acoustic 
models describing phones uttered by male speakers was 
used as the referent system. The referent system was 
trained on all sentences in the corpus, not only those of 
speakers for which at least 10 instances of each vowel 
were found in the database. The test set is the same as the 
standard set for system evaluation described in section 2. 
It contains 597 utterances with 735 words spoken by 100 
speakers. The grammar consists of 110 words with 40 of 
them not present in the training set. 

In this way the complexity increased 2.8 times 
(somewhat less than 3 because each subset in the extended 
VTN system had fewer mixtures than the referent system 
itself), and the relative improvement is about 7%. It is 
expected that extension of this approach will result in 
smaller complexity increase since some of the male and 
female phone utterances overlap regarding formant 
positions. The extension of the test set will improve WER 

resolution, which may give a better picture of the relative 
improvement. 

Conclusion 
In this paper a new approach to the vocal tract 

normalization procedure is presented. Three separate 
acoustic model sets are created to describe phones uttered 
by male speakers only. The utterances are split into 3 
classes according to speaker vocal tract length estimated 
based on F2 of the vowel /e/. Reduction of the number of 
instances caused by this procedure is overcome by 
recalculation of warping factors for each utterance. Each 
model set is trained on the same utterances, but warping 
factors for an utterance may vary depending on the model 
being trained. Such an approach omits warping factor 
calculation during the test procedure, but increases model 
complexity about 3 times. Achieved relative improvement 
in WER of 7 % is very small considering the increase in 
complexity. It is expected that the extension of this 
approach to acoustic models of phones spoken by female 
speakers will result in a more significant improvement in 
performance without such an increase in complexity. On 
the other hand, this extension will expand the training 
corpus with utterances spoken by female speakers. 

Figure 2. Warping factor histogram for warping 
factor estimation based on the 2nd formant of /e/ 

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0

10

20

30

40

50

60

warping factor

fr
eq

ue
nc

y

Acknowledgment 
This work was supported in part by the Ministry of 

Science and Environment Protection of Serbia within the 
Project “Development of speech technologies in Serbian 
and their application in ‘Telekom Srbija’” (TR-6144A). 

References 
Blomberg.  M. D. Elenius, E. Zetterholm, 2004. Speaker 

verification scores and acoustic analysis of a 
professional impersonator. FONETIK 2004 
Proceedings. 

Gouvea. E., 1998. Acoustic-Feature-Based Frequency 
Warping For Speaker Normalization. Ph. D. Thesis, 
Department of Electrical and Computer Engineering 
Pittsburgh. 

Đurić. N., D. Pekar, Lj. Jovanov, 2002. Structure of 
SpeechDat(E) database for Serbian, recorded over PTN. 
DOGS 2002 Proceedings, 1:57-60 

Jakovljević. N., D. Pekar, 2005. Description of Training 
Procedure for AlfaNum CSR System. EUROCON 2005 
Proceedings. 

Pitz. M., 2005. Investigation on Linear Transformations 
for Speaker Adaptation and Normalization. Ph. D. 
Thesis University Aachen. 

Uebel. L, P. Woodland, 1999. An Investigation into Vocal 
Tract Length Normalization. EUROSPEECH99 
Proceedings, 6:2527-2530. 

Welling L., H. Ney, 1998 Formant estimation for speech 
recognition. IEEE Transactions on Speech and Audio 
Processing, 6:36-48. 

Zhan. P., M. Westphal, 1997. Speaker Normalization 
based on Frequency Warping. IEEE Int. Conf. on 
Acoustics, Speech and Signal Processing Proceedings, 
2:1039-1042. 

Zhan. P., A. Waibel, 1997. Vocal Tract Length 
Normalization for Large Vocabulary Continuous 
Speech Recognition. Language Technologies Institute 
Technical Report CMI-LTI-97-150, Pittsburgh. 
system false  ins del WER[%] 
referent  39 37 1 8.35 
extended VTN  30 26 1 7.75 

Table 2: System performance 


