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Abstract
Latent Semantic Analysis (LSA) defines a semantic similarity space using a training corpus. This semantic similarity can be used
for dealing with long distance dependencies, which are an inherent problem for traditional word-basedn-gram models. This paper
presents an analysis of interpolated LSA models that are applied to meeting recognition. For this task it is necessary tocombine meeting
and background models. Here we show the optimization of LSA model parameters necessary for the interpolation of multiple LSA
models. The comparison of LSA and cache-based models shows furthermore that the former contain more semantic information than is
contained in the repetition of words forms.

Optimizacija latentne semantǐcne analize temeljěce na interpolaciji jezikovnega modela za namene razpoznavanja sestankov

Latentna semantična analiza (LSA) definira prostor semantične podobnosti z uporabo učnega korpusa. To semantičnopodobnost
je mogoče uporabiti pri odvisnostih dolgega dosega, ki so inherenten problem za tradicionalne, na besedah temelječen-gramske modele.
Prispevek predstavlja analizo interpoliranih modelov LSA, ki so uporabljeni za razpoznavanje sestankov. Za to nalogoje potrebno
združiti modela sestankov in ozadja. Predstavljena je optimizacija parametrov modela LSA za interpolacijo med večimi modeli LSA.
Primerjava modelov LSA in modelov s predpomnilnikom pokaže tudi, da prvi vsebujejo več semantičnih informacij kot ponavljanje
besednih oblik.

1. Introduction

Word-basedn-gram models are a popular and fairly
sucessful paradigm in language modeling. With these mod-
els it is however difficult to model long distance dependen-
cies which are present in natural language (Chelba and Je-
linek, 1998).

LSA maps a corpus of documents onto a semantic vec-
tor space. Long distance dependencies are modeled by rep-
resenting the context or history of a word and the word it-
self as a vector in this space. The similarity between these
two vectors is used to predict a word given a context. Since
LSA models the context as a bag of words it has to be com-
bined withn-gram models to include word-order statistics
of the short span history. Language models that combine
word-basedn-gram models with LSA models have been
successfully applied to conversational speech recognition
and to the Wall Street Journal recognition task (Bellegarda,
2000b)(Deng and Khudanpur, 2003).

We conjecture that LSA-based language models can
also help to improve speech recognition of recorded meet-
ings, because meetings have clear topics and LSA models
adapt dynamically to topics. Due to the sparseness of avail-
able data for language modeling for meetings it is important
to combine meeting LSA models that are trained on rela-

tively small corpora with background LSA models which
are trained on larger corpora.

LSA-based language models have several parameters
influencing the length of the history or the similarity func-
tion that need to be optimized. The interpolation of multiple
LSA models leads to additional paramters that regulate the
impact of different models on a word and model basis.

2. LSA-based Language Models

2.1. Constructing the Semantic Space

In LSA first the training corpus is encoded as a word–
document co-ocurrence matrixW (using weighted term
frequency). This matrix has high dimension and is highly
sparse. LetV be the vocabulary with|V| = M and T
be a text corpus containingn documents. Letcij be the
number of occurrences of wordi in documentj, ci the
number of occurrences of wordi in the whole corpus, i.e.
ci =

∑N

j=1 cij , andcj the number of words in documentj.
The elements ofW are given by

[W ]ij = (1 − ǫwi
)
cij

cj

(1)



whereǫwi
is defined as

ǫwi
= −

1

log N

N∑

j=1

cij

ci

log
cij

ci

. (2)

ǫw will be used as a short-hand forǫwi
. Informative words

will have a low value ofǫw. Then a semantic space with
much lower dimension is constructed using Singular Value
Decomposition (SVD) (Deerwester et al., 1990).

W ≈ Ŵ = U × S × V T (3)

For some orderr ≪ min(m, n), U is am × r left singular
matrix,S is ar× r diagonal matrix that containsr singular
values, andV is an × r right singular matrix. The vector
uiS represents wordwi, andvjS represents documentdj .

2.2. LSA Probability

In this semantic space the cosine similarity between
words and documents is defined as

Ksim(wi, dj) ,
uiSvT

j

||uiS
1
2 || · ||vjS

1
2 ||

. (4)

Since we need a probability for the integration with then-
gram models, the similarity is converted into a probabil-
ity by normalizing it. According to (Coccaro and Jurafsky,
1998), we extend the small dynamic range of the similarity
function by introducing a temperature parameterγ.

We also have to define the concept of a pseudo-
documentd̃t−1 using the word vectors of all words pre-
cedingwt, i.e. w1, . . . , wt−1. This is needed because the
model is used to compare words with documents that have
not been seen so far. In the construction of the pseudo-
document we also include a decay parameterδ < 1 that is
multiplied with the preceding pseudo-document vector and
renders words closer in the history more significant.

The conditional probability of a wordwt given a
pseudo-documentd̃t−1 is defined as

PLSA(wt|d̃t−1) ,

[Ksim(wt, d̃t−1) − Kmin(d̃t−1)]
γ

∑
w[Ksim(w, d̃t−1) − Kmin(d̃t−1)]γ

(5)

whereKmin(d̃t−1) = minw K(w, d̃t−1) to make the result-
ing similarities nonnegative (Deng and Khudanpur, 2003).

2.3. Combining LSA andn-gram Models

For the interpolation of the word basedn-gram mod-
els and the LSA models we used the methods defined in
Table 1. λ is a fixed constant interpolation weight, and∝
denotes that the result is normalized by the sum over the
whole vocabulary.λw is a word-dependent parameter de-
fined as

λw ,
1 − ǫw

2
. (6)

This definition ensures that then-gram model gets at least
half of the weight.λw is higher for more informative words.

We used two different methods for the interpolation
of n-gram models and LSA models. Theinformation
weighted geometric mean and simplelinear interpolation.

Model Definition

n-gram (baseline) Pn−gram

Linear interpolation (LIN) λPLSA + (1 − λ)Pn−gram

Information weighted
geometric mean ∝ Pλw

LSAP 1−λw

n−gram

interpolation (INFG)

Table 1: Interpolation methods.

The information weighted geometric mean interpolation
represents a loglinear interpolation of normalized LSA
probabilities and the standardn-gram.

2.4. Combining LSA Models

For the combination of multiple LSA models we tried
two different approaches. The first approach was the lin-
ear interpolation of LSA models with optimizedλi where
λn+1 = 1 − (λ1 + . . . + λn):

Plin , λ1PLsa1 + . . . + λnPLsan + λn+1Pn−gram (7)

Our second approach was the INFG Interpolation with
optimizedθi whereλ

(n+1)
w = 1 − (λ

(1)
w + . . . + λ

(n)
w ):

Pinfg ∝ P
λ(1)

w
θ1

Lsa1
. . . P

λ(n)
w

θn

Lsan
P

λ(n+1)
w

θn+1

n−gram (8)

The parameterθi have to be optimized since theλ(k)
w de-

pend on the corpus, so that a certain corpus can get a higher
weight because of a content-word-like distribution ofw, al-
though the whole data does not well fit the meeting domain.
In general we saw that theλw values were higher for the
background domain models than for the meeting models.
But taking then-gram mixtures as an example the meet-
ing models should get a higher weight than the background
models. For this reason theλw of the background models
have to be lowered usingθ.

To ensure that then-gram model gets a certain partα of
the distribution, we defineλ(k)

w for wordw and LSA model
Lsak as

λ(k)
w ,

1 − ǫ
(k)
w

n
1−α

(9)

where ǫ
(k)
w is the uninformativeness of wordw in LSA

modelLsak as defined in (2) andn is the number of LSA
models. This is a generalization of definition (6). Through
the generalization it is also possible to trainα, the mimi-
mum weight of then-gram model.

For the INFG interpolation we had to optimize the
model parametersθi, the part of then-gram modelα, and
theγ exponent for each LSA model.

3. Analysis of the models
To gain a deeper understanding of our models we an-

alyzed the effects of the model parameters and compared
our models with other similar models. For this analysis we
used meeting heldout data, containing four ICSI, four CMU
and four NIST meetings. The perplexities and similarities
were estimated using LSA and 4-gram models trained on
the Fisher conversational speech data (Bulyko et al., 2003)



and the meeting data (Table 2) minus the meeting heldout
data. The models were interpolated using the INFG inter-
polation method (Table 1).

Training Source # of words (×103)

Fisher 23357
Meeting 880

Table 2: Training data sources.

3.1. Perplexity Space of Combined LSA Models

Figure 1 shows the perplexities for the meeting and the
Fisher LSA model, that were interpolated with ann-gram
model using linear interpolation (Definition 7) wereλ1 and
λ2 are the corresponding LSA model weights. Zeros are
plotted where the interpolation is not defined, e.g. where
λ1 + λ2 ≥ 1, which would mean that then-gram model
gets zero weight.

This figure shows that the minimum perplexity is
reached withλ1 = λ2 = 0. Furthermore we can see that
the graph gets very steep with higher values ofλ. This is
beneficial for the gradient descent optimization since we al-
ways know where to go to reach the minimum perplexity.
The minimum perplexity is however reached when we do
not use the LSA model and solely rely on then-gram.
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Figure 1: Perplexity space for 2 linearly interpolated LSA
models.

Figure 2 shows the perplexity space of the INFG inter-
polation (Definition 8) for the meeting and the Fisher model
that is much flatter than the linear interpolation space. We
can estimate the difference in steepness by looking at the
perplexity scale, which is[67, 72] for the INFG interpo-
lation compared to[0, 1000] for the linearly interpolated
models. Therefore the parameter optimization is harder and
slower for this interpolation.

On the other hand we can achieve an improvement over
then-gram model when using this interpolation. The op-
timum perplexity is not reached when giving both LSA
modelsθi = 0, but when setting the parameter for the
Fisher model toθ2 = 0 and the meeting model parameter to
θ1 = 1. Theθi’s have only the function of boolean model
selectors in this2-model case. But there is still the word en-
tropy that is varying the interpolation weight between LSA
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Figure 2: Perplexity space for 2 INFG interpolated LSA
models.

andn-gram model.
When we conducted word-error-rate experiments with

combinations of more than two LSA models (Pucher et al.,
2006) we used gradient-descent optimization to optimize
all the interpolation parameters together. Here we used a
brute-force approach to get a picture of the whole perplex-
ity space.

3.2. The Repetition Effect: LSA Models and Cache
Models

Some improvements of LSA-based language models
overn-gram models are surely due to the redundant nature
of language and speech. A lot of words that pop-up in a
meeting for example are likely to pop-up again in a short
window of context. A word will be highly similar to a con-
text when the word appears in the context. A cache-based
language model can exploit this fact by keeping a cache of
words that already have been seen, and giving them higher
probability (Kuhn and De Mori, 1990). To test if the perfor-
mance of LSA-based models only rests on this cache-effect
we checked the word probabilities of the models.

+ + − −
Meet Fish Meet Fish

Word in hist. 60% 63% 5% 6%
Word out of hist. 8% 7% 27% 24%

68% 70% 32% 30%

Table 3: Number of improved LSA word probabilities.

Table 3 shows the number of improved word probabil-
ities for the meeting and the Fisher model on the heldout
data. ’+’ means that the probability of the LSA model was
higher than then-gram model probability, ’−’ means that
it was lower. The end-of-sentence event is not included.

For the meeting model 60% of the improvements are
due to the cache-effect where the word appears in the his-
tory. This value is so high because we use the decay param-
eter, so that a word disappears from the pseudo-document,
but it still stays in our cache for the whole meeting and
increases the cache-effect. So a certain amount of this
improvement is actually due to the semantic of the LSA
model. This happens because the word vector is decayed



in the pseudo-document but the word stays in the cache for
the whole meeting. The percentage of the class+/Word not
in hist. has to be increased by this amount.

We can estimate this amount by assuming that each
meeting contains≈ 7500 (90455/12 meetings) words, and
that the last100 words are present in the pseudo-document.
We know that60% of the words fall under the category
+/Word in hist. (≈ 4500 words). But this is only true if we
assume the history to be the whole preceding meeting and
not just the last 100 words. The mean length of the history
for a document of lengthk is given by the arithmetic mean
0+1+2+...+k−1

k
= k+1

2 .
In our case the mean length of the history is≈ 3700.

So we know that given a mean length of around 3700,60%
of the words fall under the former class, but given a mean
length of the history around 100, some improvement also
falls into the class+/Word not in hist, which must there-
fore be significantly higher than7%. The same reasoning
applies to the Fisher model where the performance is even
better.

According twot-tests for paired samples the differences
between LSA andn-gram models for the following classes
are significant:+/Word in hist,−/Word in hist.,−/Word
not in hist. for the meeting and the Fisher model (p < 0.05).
The difference within the class+/Word not in hist. is how-
ever not significant, but as already mentioned the true size
of this class is bigger than the estimated size.

This analysis shows that LSA-based models cannot be
simply replaced by cache-based models. Although the rep-
etition effect is important for LSA models they also cover
other semantic information.

3.3. The Temperature Effect:γ Exponent
Optimization

The temperature parameterγ (Definition 5) is used to
extend the small dynamic range of the LSA similarity (Coc-
caro and Jurafsky, 1998). Here we want to optimize this
parameter and show how it changes the LSA similarities.

The similarities were scaled by using the minimum sim-
ilarity given the history as in Definition 5. Otherwise the
exponent would make negative similarities positive.
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Figure 3: Similarities forγ = 8.

Figure 3 shows the similarity distribution for aγ value
of 8 for the Fisher model on the heldout data. This distri-
bution expanded the similarity range and assembles a lot of
similarities around zero.

In Figure 3 all similarities< 1.0 get pruned in compari-
son toγ = 1. This is due to the nature of the exponentiation
where all values between in[0, 1] get smaller if exponenti-
ated. To change this one can add an offsetβ ∈ [0, 1] to the
similarities to avoid pruning of similarities in the interval
[1 − β, 1]. For β = 1 there is no pruning since all simi-
larities are bigger than or equal to1. Than the similarity
distribution gets flatter. We also optimizedβ to find the
effect of values that are smaller than1.

For our work it is interesting to see whichγ values op-
timize the perplexity on the heldout data. Figure 4 shows
perplexities of the Fisher model on the heldout data for dif-
ferent values ofγ andβ.
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Figure 4: Perplexities for the Fisher LSA model with dif-
ferentγ andβ values.
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Figure 5: Perplexities for the meeting LSA model with dif-
ferentγ andβ values.

One can see that the lowest perplexity for allβ values
is nearly the same while only the exponent is shifting. It
can also be seen that all LSA models outperform the4-
gram model even forγ = 1. The optimalγ value for the
meetings is for allβ smaller than for the Fisher model (Fig-
ure 5). One generalization we can make from experiments
with other models is that the optimalγ value is in general
higher for bigger models, e.g. models that are trained on
larger corpora. This is also reflected in the relation between
the meeting model and the Fisher model which can be seen
from figure 5 and 4.



With the first approach one comes up with a much
smaller exponent than with the second. We conjecture that
the different values of exponents found in the literature
ranging from7 (Coccaro and Jurafsky, 1998) to20 (Deng
and Khudanpur, 2003) are due to the usage of different val-
ues ofβ. Since we do not see a difference in perplexity
we conclude that it does not matter which approach one
chooses.

The temperature parameter was optimized indepen-
dently from the interpolation parameters. We found that
this value is stable over different test data sets.

3.4. The History Effect: δ Decay Optimization

Here we show how the decay parameterδ influences the
perplexity. The perplexity of the4-gram Fisher and meeting
models are again our baselines. As a test set we use again
the meeting heldout data. The idea of the decay parameter
is to update the pseudo-document in a way that words that
were recently seen get a higher weight than words that are
in a more distant history. Finally the words that are far
away from the actual word are forgotten and have no more
influence on the prediction of the actual word. (Bellegarda,
2000a) finds a value around0.98 to be optimal for the decay
parameterδ.
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Figure 6: Perplexities for a4-gram and LSA models with
different decaysδ.

Figure 6 shows that there is a constant drop in perplex-
ity as we increase the length of the history, e.g. the value
of δ. There is however not much difference for the decay
value0.98 and1.0, which means that no words are forgot-
ten. But even the shortest history with a decay of0.05 has
a lower perplexity than the4-gram for the Fisher and the
meeting model on the heldout data. We can conclude that it
is beneficial for our models not to forget too fast but there
is no big difference between forgetting very slow and never
forgetting. In our experiments we used nevertheless a decay
of 0.98 because it still has the best performance concerning
perplexity and because it was also found to be optimal by
others (Bellegarda, 2000a).

The decay parameter was optimized independently of
the interpolation parameter and the temperature parameter.

4. Conclusion
We showed how to optimize the parameters for interpo-

lated LSA-based language models and saw that simple lin-
ear interpolation did not achieve any improvements. With
the INFG interpolation we achieved an improvement and a
model selection.

The comparison between LSA and cache-based models
showed that a large amount of the improvement is due to the
repetition of words, but there is also an improvement that
relies on other features of the LSA-based models. So cache-
based models cannot simply replace LSA-based models.

We also presented the optimization of similarity expo-
nent and offset and saw the relation between the offset se-
lection and the similarity exponent.

The optimization of the decay parameter showed that it
makes little difference when being close to or equal to one,
but a bigger difference when the value gets close to zero.

We can conclude that the optimzation of parameters
is crucial for outperforming word-basedn-gram language
models by interpolated LSA models.
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