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Abstract
This paper deals with feature extraction in speech recognition. Three robust variants of popular HLDA transform are investigated.
Influence of adding posterior features to PLP feature stream is studied. The experimental results are obtained on CTS (continuous
telephone speech) data. Silence-reduced HLDA and LCRC phoneme-state posterior features together provide more than 4% absolute
improvement in word error rate.

Robustna heteroroskedastična linearna diskriminantna analiza (HLDA) in LCRC posteriorne značilke pri
razpoznavanju tekočega govora z velikim besednjakom

Prispevek se ukvarja z izločanjem značilk v razpoznavanju govora. Raziskane so tri robustne različice priljubljene transformacije HLDA.
Obravnavan je vpliv dodajanja posteriornih znailk zaporedju značilk PLP. Experimentalni rezultati so dobljeni na podlagi podatkov
zveznega telefonskega govora. HLDA in LCRC posteriorne znailke stanja fonema skupaj prinašata več kot 4% absolutno izboljšanje pri
stopnji zanesljivosti razpoznavanja besed.

1. Introduction
Speech feature extraction is important part of every

large vocabulary continuous speech recognition system
(LVCSR). Performance gains obtained thanks to this block
are quite welcome as (on contrary to adding data or chang-
ing training or decoding algorithms), feature extraction is
considered as “cheap” part of speech recognition system.

One of key problems in feature extraction is to reduce
the dimensionality of feature vectors while preserving the
discriminative power of features. Linear transforms such
as Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA) are mostly used for this task. In
recent years, Heteroscedastic Linear Discriminant Analysis
(HLDA) has gained popularity in the research community
(Kumar, 1997; Burget, 2004) for its relaxed constraints on
statistical properties of classes (unlike LDA, HLDA does
not assume the same covariance matrix for all classes).
To compute HLDA transformation matrix, however, more
statistics need to be estimated and the reliability of such
estimations becomes an issue. Section 2. discusses robust
variants of HLDA.

Second part of the paper is devoted to the use of
posterior-features. Posteriors generated by neural networks
(NN) and converted into features are also increasingly pop-
ular in small (Adami et al., 2002) and large (Zhu et al.,
2005) recognition systems for their complementarity with
classical PLP or MFCC coefficients. Section 3. introduces
phoneme-state posterior estimator based on split temporal
context (Schwarz et al., 2004; Schwarz et al., 2006) that has
already proved its quality in different tasks ranging from
language identification to keyword spotting.

2. HLDA
HLDA allows to derive such projection that best de-

correlates features associated with each particular class

(maximum likelihood linear transformation for diagonal
covariance modeling (Kumar, 1997)). To perform de-
correlation and dimensionality reduction, n-dimensional
feature vectors are projected into first p < n rows, ak=1...p,
of n×n HLDA transformation matrix, A. An efficient iter-
ative algorithm (Gales., 1999; Burget, 2004) is used in our
experiments to estimate matrix A, where individual rows
are periodically re-estimated using the following formula:
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where Σ̂ and Σ̂
j

are estimates of the global covariance
matrix and covariance matrix of jth class, γj is number
of training feature vectors belonging to jth class and T is
the total number of training feature vectors. In our exper-
iments, the classes are defined by each Gaussian mixture
component and γj are their occupation counts.

Well known Linear Discriminant Analysis (LDA) can
be seen as special case of HLDA, where it is assumed that
covariance matrices of all classes are the same. In contrast
to HLDA, closed form solution exists in this case. Basis
of LDA transformation are given by eigen-vectors of ma-
trix ΣAC × Σ

−1
WC , where ΣWC is within-class covariance

matrix and ΣAC is across-class covariance matrix.

2.1. SHLDA
HLDA requires the covariance matrix to be estimated

for each class. The higher number of classes is used, the



fewer feature vector examples are available for each class
— class covariance matrix estimates become more noisy.
We have recently proposed (Burget, 2004) a technique
based on combination of HLDA and LDA, where class co-
variance matrices are estimated more robustly, and at the
same time, (at least the major) differences between covari-
ance matrices of different classes are preserved. Smoothed
HLDA (SHLDA) differs from HLDA only in the way
of class covariance matrices estimation. In the case of
SHLDA, estimate of class covariance matrices is given by:

Σ̌j = αΣ̂j + (1 − α)ΣWC (3)

where Σ̌j is “smoothed” estimate of covariance matrix for
class j. Σ̂j is estimate of covariance matrix, ΣWC is esti-
mate of within-class covariance matrix and α is smoothing
factor — a value in the range of 0 to 1. Note that for α equal
to 0, SHLDA becomes LDA and for α equal to 1, SHLDA
becomes HLDA.

2.2. MAP-SHLDA
SHLDA gives more robust estimation than standard

HLDA but optimal smoothing factor α depends on the
amount of data for each class. In extreme case, α should
be set to 0 (HLDA) if infinite amount of training data is
available. With decreasing amount of data, optimal α value
will slide up to LDA direction.

To add more robustness into the smoothing procedure,
we implemented maximum a posteriori (MAP) smoothing
(Gauvain and Lee, 1994), where within-class covariance
matrix ΣWC is considered as the prior. Estimate of the
class covariance matrix is then given by:

Σ̌j = ΣWC

τ

γj + τ
+ Σ̂j

γj

γj + τ
(4)

where τ is a control constant. Obviously, if insufficient data
is available for current class, the prior ΣWC is considered
more reliable than the class estimation Σ̂j . In case of infi-
nite data, only the class estimation of covariance matrix Σ̂j

is used for further processing.

2.3. Silence Reduction in HLDA
From the point of view of transformation estimation,

silence is a “bad” class as its distributions differ signif-
icantly from all speech classes. Moreover, training data
(even if end-pointed) contains significant proportion of si-
lence. Therefore, we have experimented with limiting the
influence of silence.

Rather than discarding the silence frames, the occupa-
tion counts γj of silence classes, which take part in compu-
tation of global covariance matrix Σ̂, and in Equation 2 are
scaled by silence reduction factor 1/SR. Setting SR = ∞
corresponds to complete elimination of silence statistics.

3. Posterior features
Several works have shown that using posterior-features

generated by NNs is advantageous for speech recognition
(Adami et al., 2002; Zhu et al., 2005). We have experi-
mented with two setups to generate posteriors. The first one

is based on a simple estimation of phoneme posterior prob-
abilities from a block of 9 consecutive PLP-feature vectors
(FeatureNet).

The second one uses our state-of-the-art phoneme-state
posterior estimator based on modeling long temporal con-
text (Schwarz et al., 2006). Details of the posterior estima-
tor are shown in Fig. 1. Mel filter bank log energies are
obtained in conventional way. Based on our previous work
in phoneme recognition (Schwarz et al., 2004), the context
of 31 frames (310 ms) around the current frame is taken.
This context is split into 2 halves: Left and Right Contexts
(hence the name “LCRC”). This allows for more precise
modeling of the whole trajectory while limiting the size of
the model (number of weights in the NN) and reducing the
amount of necessary training data. For both parts, tempo-
ral evolutions of critical band log energies are processed
by discrete cosine transform to de-correlate and reduce di-
mensionality. Two NNs are trained to produce phoneme-
state posterior probabilities for both context parts. We use
3 states per phoneme which follows similar idea as states
in phoneme HMM. Third NN functions as a merger and
produces final set of phoneme-state posterior probabilities1

For both approaches, the resulting posteriors are pro-
cessed by log and by a linear transform to de-correlate and
reduce dimensionality (details are given in the experimental
section below).

4. Experiments
Our recognition system was trained on ctstrain04 train-

ing set, a subset of the h5train03 set, defined at the Cam-
bridge University as training set for Conversation Tele-
phone Speech (CTS) recognition systems (Hain et al.,
2005). It contains about 278 hours of well transcribed
speech data from Switchboard I, II and Call Home English.
All systems were tested on the Hub5 Eval01 test set com-
posed of 3 subsets of 20 conversations from Switchboard
I, II, and Switchboard-cellular, for a total length of about 6
hours of audio data.

The baseline features are 13th order PLP cepstral coef-
ficients, including 0th one, with first and second derivatives
added. This gives a standard 39 dimension feature vec-
tor. Cepstral mean and variance normalization was applied.
Baseline cross-word triphone HMM models were trained
by Baum-Welch re-estimation and mixture splitting. We
used a standard 3-state left-to-right phoneme setup, with 16
Gaussian mixture components per state. 7598 tied states
were obtained by decision tree clustering. Each Gaussian
mixture was taken as a different class for HLDA experi-
ment. Therefore, we had N = 16×7598 = 121568 classes.

The trigram language model used in decoding was es-
timated at University of Sheffield by interpolation from
Switchboard I, II, Call Home English and Hub4 (Broadcast
news) transcriptions. The size of recognition vocabulary
was 50k words.

The recognition output was generated in two passes:
At first, lattice generation with baseline HMMs and bi-
gram language model was performed. The lattices were

1Neural nets are trained using QuickNet from ICSI and SNet –
a parallel NN training software being developed in Speech@FIT
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Figure 1: Phoneme-state posterior estimator based on split left and right contexts.
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Figure 2: Dependency of WER on the SHLDA smoothing
factors.

expanded by more accurate trigram language model. The
pruning process was applied to reduce them to reasonable
size. In the second pass, lattices were re-scored with tested
features and models.

4.1. Flavors of HLDA
We added the third derivatives into the feature stream,

which gave us 52 dimensional feature vectors. SHLDA
transform was then trained to perform the projection from
52 to 39 dimension. Smoothing factors α in Eq. 3 of 0.0
(LDA), 0.3, 0.4, 0.5, 0.7, 0.9, 1.0 (HLDA) were tested. Fig-
ure 2 shows dependency of WER on SHLDA smoothing
factor α. Pure LDA failed, probably due to bad assumption
of the same Gaussian distribution in all classes. The best
system performance (Table 1) was obtained for smoothing
factor 0.9. The relative improvement of this system is 7.9%
compared to the baseline and 0.6% compared to the clean
HLDA setup.

MAP-SHLDA test setup was built in same way as
SHLDA system, only the smoothing procedure (Equa-
tion 3) was replaced by MAP approach (Equation 4). The
average value of all class occupation counts was 820.
Therefore τ = 820 in MAP-SHLDA should have the same
behavior as α = 0.5 in SHLDA if all classes had the same
number of observations. The optimal smoothing values for
SHLDA were in range 0.5—0.9 (Figure 2). Therefore, we
decided to test smoothing control constant τ on values 0
(HLDA), 100, 200, 300, 400, 600, 800 and 1000. The re-
sults are shown in Figure 3. The best system performance
(Table 1) was obtained for τ = 400. The relative improve-
ment of this system is 8% compared to the baseline and
0.7% compared to the clean HLDA setup.

Silence reduction in HLDA (SR-HLDA) was tested
with factors SR equal to 1 (no reduction), 2, 10, 100 and
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Figure 3: Dependency of WER on the MAP-SHLDA
(right) smoothing factors.

System WER [%]
Baseline (no HLDA) 36.7
HLDA 34.8
SHLDA 34.6
MAP-SHLDA 34.6
SR-HLDA 34.5

Table 1: Comparison of HLDA systems.

∞ (removing all silence classes). For SR = 1, the WER is
obviously 34.8%, for SR = 2 it drops to 34.6% and from
SR = 10 . . .∞ it is constant: 34.5%.

4.2. Posterior features
Posterior features were always used together with base

PLP features. Table 2 summarizes the results.
Upper part of Figure 4 shows the way the two fea-

ture streams were combined in FeatureNet experiments.
The upper branch corresponds to the previous section. To
compute posterior features, 9 frames of PLP+∆+∆∆ were
stacked and processed by a neural net with 1262 neurons in
the hidden layer (this number was chosen to have approx-
imately 500k weights in the NN). There are 45 phoneme
classes, which determines the size of the output layer. Log-
posteriors are processed by KLT or HLDA and then con-
catenated with PLP+HLDA features to form the final 64-
dimensional feature vectors.

Lower panel of Figure 4 presents the setup with LCRC-
posterior features. The PLPs were derived directly with ∆,
∆∆ and ∆∆∆, and down-scaled by HLDA to 39 dimen-
sions. The detail of LCRC-posterior feature derivation is in
Fig. 1, all nets had 1500 neurons in the hidden layer. For



System WER [%]
PLP SR-HLDA 34.5
PLP SR-HLDA + PLP-posteriors KLT 33.8
PLP SR-HLDA + PLP-posteriors HLDA 33.3
PLP SR-HLDA + LCRC-posteriors HLDA 32.6

Table 2: Performance of posterior features in the CTS sys-
tem.

PLP, ∆,∆∆ ∆∆∆ HLDA

stacking
9 frames

NN
(hidden
layer 1262)

concat
KLT
or
HLDA

log

39 52 39

351 45 45 25

64

HLDA

LC−RC
system
(3 nets)

logMel filterbank KLT HLDA concat

39
PLP, ∆,∆∆,∆∆∆

52

15 135 135

64

2570

Figure 4: Configuration of the system with PLP- (upper
panel) LCRC-posteriors (lower panel).

each frame, the output of LCRC system are estimates of
135 phoneme-state2 posterior probabilities. As the number
of phoneme-state posteriors is too high to fit the statistics
necessary for HLDA estimation into the memory, the out-
put dimensionality of LCRC system is first reduced by KLT
from 135 to 70. The following HLDA reduces this size to
25, and the results are concatenated with PLP+HLDA fea-
tures to form again 64-dimensional feature vectors.

We see, that the posterior features improve the results by
almost 1% absolutely, and that there is clear preference of
HLDA to KLT. With the new LCRC features, we have con-
firmed good results they provide in phoneme recognition
(Schwarz et al., 2006) — with these features, the results are
almost 2% better than the PLP SR-HLDA baseline.

5. Conclusion
In this paper, we have investigated robust variants of

HLDA and use of classical and novel posterior features in
speech recognition.

In the HLDA part, 2 approaches of HLDA smoothing
were tested: Smoothed HLDA (SHLDA) and MAP vari-
ant of SHLDA, taking into account the amounts of data
available for estimation of statistics for different classes.
Both perform better than the basic HLDA. We have how-
ever found, that removing the silence class from the HLDA
estimations (Silence-reduced HLDA) is equally effective
and cheaper in computation. Testing SHLDA and MAP-
SHLDA on the top of SR-HLDA did not bring any fur-
ther improvement, therefore we stick with SR-HLDA as the
most suitable transformation in our LVCSR experiments.

Two kinds of posterior features were tested – “classical”
FeatureNet approach with stacked 9 frames of PLPs and

2see (Schwarz et al., 2006) for details on splitting each of
phonemes to 3 phoneme-states

novel approach using more elaborate structure to phoneme-
state posterior modeling. The later scheme provided signif-
icant reduction of word error rate.

Our current work focuses on using the described feature
extraction schemes in meeting data recognition along with
speaker adaptative training scheme based on constrained
maximum likelihood linear regression (CMLLR) and dis-
criminative training using Minimum Phoneme Error (MPE)
criterion. First results indicate that the improvement ob-
tained by SHLDA and posterior features carries on through
both adaptation and discriminative training steps.
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