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Abstract
This paper reviews the current state of a Hungarian project that seeks to create a speech recognition system for the dictation of thyroid
gland medical reports. We present the MRBA speech corpus that was collected to support the training of Hungarian LVCSR systems.
Besides the speech data, a huge set of medical reports was also collected to help the creation of domain-specific language models. At the
acoustic modelling level we experiment with two techniques – a conventional HMM one and an ANN-based solution – which are both
briefly described in the paper. Then we present the language modelling methodology currently applied in the system, and round off with
recognition results on test data taken from four people. The scores show that on the current restricted domain we are able to produce
word accuracies over 95%, but the planned extension of the system to larger vocabularies will probably require further improvements.

Prvi rezultati mad žarskega projekta narekovanja zdravnǐskih izvidov

Prispevek predstavlja pregled trenutnega stanja madžarskega projekta, ki skuša vzpostaviti sistem razpoznavanja govora za narekovanje
zdravnǐskih izvidov na temǒzlezeščitnice. Predstavljamo govorni korpus MRBA, ki je bil sestavljen za podporo učenju maďzarskih
sistemov za razpoznavanje govora z velikim besednjakom. Poleg govornih podatkov je bilo zbrano tudi velikoštevilo zdravnǐskih izvidov
za pomǒc pri pripravi jezikovnih modelov za omenjeno področje uporabe. Na ravni akustičnega modeliranja eksperimentiramo z dvema
tehnikama - konvencionalno s prikritimi Markovovimi modeli in rešitvijo, ki temelji na nevronskih mrězah - obe sta kratko predstavljeni.
Nato predstavljamo metodologijo jezikovnega modeliranja, ki je trenutno uporabljena v sistemu, in zaključimo z rezultati razpoznavanja
na testnih podatkiȟstirih govorcev. Rezultati pokažejo, da smo pri trenutnem omejenem področju uporabe zmǒzni dosegati tǒcnost
razpoznavanja besed višjo kot 95%, nǎcrtovana ražsiritev sistema nǎsirše besedišče pa bo verjetno zahtevala dodatne izboljšave.

1. Introduction: goals of the project

At the present time there exists no general-purpose large
vocabulary continuous speech recognizer (LVCSR) for the
Hungarian language. Among the university publications
even papers that deal with continuous speech recognition
are hard to find, and these present results only for restricted
vocabularies (Szarvas and Furui, 2002). Although on the
industrial side Philips have adapted its SpeechMagic sys-
tem to two special domains in Hungarian, it is sold at a
price that is affordable for only the largest institutes (Medis-
oft, 2004). The experts usually mention two reasons for
the lack of Hungarian LVCSR systems. First, there are no
sufficiently large, publicly available speech databases that
would allow the training of reliable phone models. The sec-
ond reason is the difficulties of language modelling due to
the highly agglutinative nature of Hungarian.

In 2004 the Research Group on Artificial Intelligence,
University of Szeged and the Laboratory of Speech Acous-
tics of the Budapest University of Technology and Eco-
nomics started a project with the aim of collecting and/or
creating the basic resources needed for the construction of
a continuous dictation system. The project lasts for three
years, and is financially supported by the national fund
IKTA-056/2003. As regards acoustic modelling, the project
includes the collection and annotation of a large speech cor-
pus of phonetically rich sentences. As regards language
modelling, we restricted the target domain to the dictation
of certain types of medical reports. Although this clearly
leads to a significant reduction compared to the original,

general dictation task, we chose this application area with
the intent of assessing the capabilities of our acoustic and
language modelling technologies. Depending on the find-
ings, later we hope to extend the system to more general
dictation domains. This is why the language resources were
chosen to be domain-specific, while the acoustic database
contains quite general, domain-independent recordings.

Although both teams use the same speech corpus for
training, they focus on different dictation tasks and experi-
ment with their own acoustic and language modelling tech-
nologies. Our team (Szeged) deals with the dictation of thy-
roid scintigraphy medical reports, while the Budapest team
deals with gastroenterology reports. This paper describes
the current state of development of the Szeged team only.

2. Speech and language resources
In the first phase of the project we designed, collected

and annotated a speech database that we refer to as the
MRBA corpus (the abbreviation stands for the ”Hungar-
ian Reference Speech Database”) (Vicsi et al., 2004). Our
goal was to create a database that allows the training of
general-purpose dictation systems which run on personal
computers in office environments and work with continu-
ous, read speech. The contents of the database were de-
signed by the Laboratory of Speech Acoustics. As a start-
ing point, they took a large (1.6 MB) text corpus and af-
ter automatic phonetic transcription they created phone, di-
phone and triphone statistics from it. Then they selected
1992 different sentences and 1992 different words in such
a way that 98.8% of the most frequent diphones had at least



one occurrence in them. These sentences and words were
recorded from 332 speakers, each reading 12 sentences and
12 words. Thus all sentences and words have two record-
ings in the speech corpus. Both teams participated in the
collection of the recordings, which was carried out in four
big cities, mostly at universities labs, offices and home en-
vironments. In the database the ratio of male and female
speakers is 57.5% to 42.5%. About one-third of the speak-
ers are between 16-30 years in age, the rest being evenly
distributed among the remaining age groups. Both home
PCs and laptops were used for the recordings, and the mi-
crophones and the sound cards of course varied as well. The
sound files were cleaned and annotated at the Laboratory of
Speech Acoustics, while the Research Group on Artificial
Intelligence manually segmented and labelled one third of
the files at the phone level. This part of the corpus is in-
tended to support the initialization of phone models.

Besides the general-purpose MRBA corpus, we also
collected recordings that are specific for the target domain,
namely thyroid scintigraphy medical reports. From these
recordings 20-20 reports read aloud by 4 persons were used
as test data in the experiments done here.

For the construction of the domain-specific language
models, we obtained 9231 written medical reports from
the Department of Nuclear Medicine of the University of
Szeged. These thyroid scintigraphy reports were written
and stored between 1998 and 2004 using various software
packages that were employed at the department during that
period. So first of all we had to convert all the reports to
a common format, which was followed by several steps of
error correction. Each report consists of 7 fields: header
(name, ID number etc. of the patient), clinical observations,
request of the referral doctor, a summary of previous exam-
inations, the findings of this examination, a one-sentence
summary, and a signature. From the corpus we omitted the
first and the last, person-specific fields, for the sake of per-
sonal privacy. Then we discarded those reports that were
incomplete like those that had missing fields. This way
only 8546 reports were kept, which contain 11 sentences
and 6 words per sentence on average. The next step was
to remove any typographical errors from the database, of
which there were surprisingly many (some words occurred
in 10-15 mistyped forms). A special problem was that of
unifying those Latin terms that can be written both with a
Latin or a Hungarian spelling. The abbreviations had to be
resolved, too. The corpus we got after these steps contained
approximately 2500 different word forms, so we were con-
fronted with a medium-sized vocabulary dictation task.

3. Acoustic modelling I: HMM phone
models over MFCC features

At the level of acoustic modelling we have been ex-
perimenting with two quite different technologies. One
of these is a quite conventional Hidden Markov Model
(HMM) decoder that works over the usual mel-frequency
cepstral coefficient (MFCC) features (Huang et al., 2001).
More precisely, 13 coefficients are extracted from 25 msec
frames, along with their∆ and∆∆ values, at a rate of 100
frames/sec. The phone models applied have the usual 3-
state left-to-right topology. Although Hungarian has the

special property that almost all phones have a short and
a long counterpart, in the vocabulary of our specific dic-
tation task they seemed to have no discriminative role.
Hence most of the long/short consonant labels were fused,
and this way we worked with just 44 phone classes. One
phone model was associated with each of these classes,
that is we applied monophone modelling and no context-
dependent models were tested in the system. The decoder
built on these HMM phone models performs a combination
of Viterbi and multi-stack decoding. For speed efficiency
it contains several built-in pruning criteria. First, it applies
beam pruning, so only the hypotheses with a score no worse
than the best score minus a threshold are kept. Second,
the number of hypotheses extended at every time point is
limited, corresponding to multi-stack decoding with a stack
size constraint. The maximal evaluated phone duration can
also be limited. Normally the decoder runs faster than real-
time on our dictation task on a typical PC.

4. Acoustic modelling II: HMM/ANN phone
models over 2D-cepstrum features

Our alternative, more experimental acoustic model em-
ploys the HMM/ANN hybrid technology (Bourlard and
Morgan, 1994). The basic difference between this and the
standard HMM scheme is that here the emission probabil-
ities are modelled by Artificial Neural Networks (ANNs)
instead of the conventional Gaussian mixtures. In the sim-
plest configuration one can train the neural net over the
usual 39 MFCC coefficients – whose result can serve as a
baseline for comparison with the conventional HMM. How-
ever, ANNs seem to be more capable of modelling the ob-
servation context than the GMM technology, so the hybrid
models are usually trained over longer time windows. The
easiest solution for this is to specify a couple of neighboring
feature frames as input to the net: a conventional arrange-
ment is to use 4 neighboring frames on both sides of the
actual frame (Bourlard and Morgan, 1994). Another option
is to apply some kind of transformation on the data block
of several neighboring frames. Knowing that the modula-
tion components play an important role in human speech
perception, performing a frequency analysis over the fea-
ture trajectories seems reasonable. When this analysis is
applied to the cepstral coefficients, the resulting feature set
is usually referred to as the 2D-cepstrum (Kanedera et al.,
1998). Research shows that most of the useful linguistic
information is in the modulation frequency components be-
tween 1 and 16 Hz, especially between 2 and 10 Hz. This
means that not all of the components of a frequency anal-
ysis have to be retained, and so the 2D-cepstrum offers a
compact representation of a longer temporal context.

In the experiments we tried to find the smallest feature
set that gave the best recognition results. As a quick in-
dicator of the efficiency of a representation we used the
frame-level classification score, so the values given below
are frame-level accuracy values (measured on a held-out
data set of 20% of the training data). First of all we tried to
extend the data of the ‘target’ frame by neighboring frames,
without applying any transformation. The results shown in
Table 1 indicate that training on more than 5 neighboring
frames only significantly increased the number of features



and hidden neurons (and even more considerably the train-
ing time) without bringing a real improvement in the score.

In the experiments with the 2D-cepstrum we first tried
to find the optimal size of the temporal window. Hence we
varied the size of the DFT analysis between 8, 16, 32, and
64, always retaining the first and second components (both
the real and the imaginary parts), and combined these with
the static MFCC coefficients. The results displayed in Table
2 indicate that the optimum must be somewhere between 16
and 32 (160 and 320 milliseconds). This is smaller than the
400 ms value found optimal by Kanedera et al. (1998) and
the 310 ms value reported by Schwarz et al. (2003), but this
might depend on the amount of training data available (a
larger database would cover more of the possible variations
and hence would allow a larger window size). Of course,
one could also experiment with the combination of various
window sizes as Kanedera et al. (1998) did, but we did not
run such multi-resolution tests.

As the next step we examined whether it was worth re-
taining more components. In the case of the 16-point DFT
we kept 3 components, while for the 32-point DFT we tried
retaining 5 components (the highest center frequency being
18.75 Hz and 15.625 Hz, respectively). The results show
(Table 3) that the higher modulation frequency components
are less useful, which accords with what is known about the
importance of the various modulation frequencies.

Finally, we tried varying the type of transformation ap-
plied. Motĺıček reported that there is no need to retain both
the real and imaginary parts of the DFT coefficients; using
just one of them is sufficient. Also, he obtained a similar
performance when replacing the complex DFT with DCT
(Motlı́ček, 2003). Our findings agree more with those of
Kanedera et al. (1998), that is we obtained slightly worse
results with these modifications (see Table 4). So we opted
for the complex DFT, using both the real and imaginary
coefficients. One advantage of the complex DFT over the
DCT might be that when only some of its coefficients are
required (as in our case), it can be very efficiently computed
using a recursive formulation (Jacobsen and Lyons, 2004).

5. Domain-specific language modelling
A special difficulty of creating language models for

Hungarian is the highly agglutinative nature of the lan-
guage. In a large vocabulary modelling task the applica-
tion of a morphologic analyzer/generator seems inevitable.
First, simply listing and storing all the word forms would
be nearly impossible (an average noun can have about 700
inflected forms). Second, if we simply handled all these
inflected forms as different words, then achieving a cer-
tain coverage rate in Hungarian would require a text about
5 times bigger than that in German and 20 times bigger
than that in English (Ńemeth and Zainḱo, 2001). Hence,
the training of conventionalN -gram models would require
significantly larger corpora in Hungarian than in English, or
even in German. A possible solution might be to train the
N -grams over morphemes instead of word forms, but then
again the handling of morphology would be necessary.

Though quite good morphological tools exist now for
Hungarian, in the first experiments with our system we pre-
ferred to avoid the complications with morphology. The

Obs. size Hidden neurons Frames correct

1 frames 150 64.16%
3 frames 200 67.51%
5 frames 250 68.67%
7 frames 300 68.81%
9 frames 350 68.76%

Table 1: The effect of varying the observation context size.

DFT size Hidden neurons Frames correct

8 200 64.63%
16 200 67.60%
32 200 67.01%
64 200 64.75%

Table 2: Frame-level results at various DFT sizes.

DFT Size Components H. neurons Frames corr.

16 1, 2, 3 250 68.40%
32 1, 2, 3, 4, 5 300 70.64%

Table 3: Frame-level results with more DFT components.

Transform Hidden neurons Frames correct

DFT Re + Im 300 70.64%
DFT Re only 220 65.81%

DCT 220 68.00%

Table 4: The effect of varying the transformation type.

restricted vocabulary is one of the reasons why we chose
the medical dictation task. As was mentioned, the thyroid
gland medical reports contained only about 2500 different
word forms. Although these many words could be easily
managed even by a simple list (‘linear lexicon’), we orga-
nize them into a lexical tree where the common prefixes of
the lexical entries are shared. Apart from storage reduction
advantages, this representation also speeds up decoding, as
it eliminates redundant acoustic evaluations (Huang et al.,
2001). The prefix tree representation is quite probably even
more useful for agglutinative languages than for English,
because of the many inflected forms of the same stem.

The limited size of the vocabulary and the highly re-
stricted (i.e. low-perplexity) nature of the sentences used
in the reports allowed us to create very efficientN -grams.
Moreover, we did not really have to worry about out-of-
vocabulary words, since we had all the reports from the pre-
vious six years, so the risk of facing unknown words dur-
ing usage seemed minimal. The system currently applies
3-grams by default, but it is able to ‘back off’ to smaller
N -grams (in the worst case to a smallε constant) when
necessary. During the evaluation of theN -grams the sys-
tem applies a language model lookahead technique. This
means that the language model returns its scores as early
as possible, not just at word endings. For this purpose the
lexical trees get factored, so that when several words share
a common prefix, the maximum of their probabilities is as-
sociated with that prefix (Huang et al., 2001). These tech-



Model Type Feature Set Male 1 Male 2 Female 1 Female 2

HMM MFCC +∆ + ∆∆ 97.75% 98.22% 93.40% 93.39%
HMM/ANN MFCC +∆ + ∆∆ 97.65% 97.37% 96.78% 96.91%
HMM/ANN 5-frames∗ (MFCC +∆ + ∆∆) 97.65% 97.74% 96.67% 98.05%
HMM/ANN MFCC + 5 Mod. Comp. (Re + Im) 97.88% 97.83% 96.86% 96.42%

Table 5: Word recognition accuracies of the various models and feature sets.

niques allow a more efficient pruning of the search space.
Besides wordN -grams we also experimented with con-

structing classN -grams. For this purpose the words were
grouped into classes according to their parts-of-speech cat-
egory. The words were categorized using the POS tagger
software developed at our university (Kuba et al., 2004).
This software associates one or more MSD (morpho-
syntactic description) code with the words, and we con-
structed the classN -grams over these codes. With the help
of the classN -grams the language model can be made more
robust in those cases when the wordN -gram encounters
an unknown word, so it practically performs a kind of lan-
guage model smoothing. In previous experiments we found
that the application of the language model lookahead tech-
nique and classN -grams brought about a 30% decrease in
the word error rate when it was applied in combination with
our HMM-based fast decoder (Bánhalmi et al., 2005).

6. Experimental results and discussion
For testing purposes we recorded 20-20 reports from 2-

2 male and female speakers. The language model applied in
the tests was constructed based on only 500 reports instead
of all the 8546 ones we collected. This subset contained al-
most all the sentence types that occur in the reports, so this
restriction mostly reduced the dictionary by removing a lot
of rarely occurring words (e.g. dates and disease names).
Besides the HMM decoder we tested the HMM/ANN hy-
brid system in three configurations: the net being trained
on one frame of data, on five neighboring frames, and on
the best 2D-cepstrum feature set (static MFFC features plus
5 modulation components using a 32-point complex DFT,
both Re and Im parts). The results are listed in Table 5.
Comparing the first two lines, we see that when using the
same features the HMM and the HMM/ANN system per-
formed quite similarly on the male speakers. For some
reason, however, the HMM system did not like the set of
female voices. Extending the net’s input with an observa-
tion context – either by neighboring frames or by modu-
lation features – brought only a modest improvement over
the baseline results. We think that the improvement in the
acoustic modelling will be more prominently reflected in
the scores when moving to a linguistically less restricted
domain where the decoder cannot rely so strongly on the
language model as it does in the current configuration.

7. Conclusions
This paper reported the current state of a Hungarian

project for the automated dictation of medical reports. We
described the acoustic and linguistic training data collected
and the current state of development in both the acoustic

and linguistic modelling areas. Preliminary recognition re-
sults were also given over a somewhat restricted subset of
the full domain to be handled. As the next step we plan
to extend the vocabulary and language model to cover all
the available data, and our preliminary results show that
for a larger vocabulary several further improvements will
be necessary. On the acoustic modelling side we intend to
implement speaker adaptation and context-dependent mod-
els (within the HMM system). We also plan to continue
our research on observation context modelling (within the
HMM/ANN system). Finally, the language model will also
need to be improved, especially when handling certain spe-
cial features like dates or abbreviations.
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