
TEI XSLT Stylesheets for Transformation

TEI@Oxford

July 2009

Using TEI XSL

This is a family of XSL stylesheets which are designed to render
simple TEI documents. For the purpose of the TEI Consortium, they

• Implement the processing of ODD files behind Roma to make
schemas and documentation

• …and thus generate the TEI Guidelines in HTML
• …and transform the TEI Guidelines to LaTeX for typesetting
• Render TEI Lite documents to

1. HTML
2. XHTML
3. XSL FO (formatting objects, for page makeup)
4. LaTeX (for typesetting)

The stylesheets have internal documentation, using P&P Software's
XSLTdoc system

http://www.pnp-software.com/

Limitations

These stylesheets only do what were designed to do!

• They do not provide a rendering of all TEI elements
• They do not implement all possible values of every@rend
attribute

• The different output formats are not always in sync, or give the
same result

but they do deal with quite a few common problems.

Related stylesheets

We also maintain in XSLT:

• A simple Docbook to TEI conversion
• Conversions to and from OpenOffice XML
• Conversions to and fromWord 2007 XML
• Conversion from TEI P4 to TEI P5

Output assumptions
The stylesheets attempt to work in the same way with each of the
three supported output formats, but note:

• The HTML output is designed to work with an associated CSS
stylesheet, which takes care of much of the detailed spacing
and font work; however, the HTML is in charge of features such
as the numbering of sections.

• The LaTeX output is designed for people who understand how
to use existing LaTeX packages and classes; it therefore tries to
produce reasonably readable TeX markup, with high-level
commands whose effects will be determined by LaTeX
(including numbering and spacing).

• The XSL FO output produces a very detailed specification of
the output layout, with all the details of fonts, numbering,
vertical and horizontal spacing specified in situ. The FO
processor is only responsible for line and page breaking, and
hyphenation.

Many parameters

There are dozens and dozens of parameters which affect the
stylesheet output; you can set values for these by

• specifying parameter names and values directly in oXygen
• setting them on a command line
• constructing a small local stylesheet which imports the public
one, and adds overrides

Invoking an XSLT transform from oXygen

When you have loaded an XML file, look for the symbol in the
menu and press it.

The first time, it will ask you which transformation scenario to use:

Simple result

Configuring the scenario in oXygen

Look for the symbol. This produces ,
asking if you want to change the setup. Choose yes, and you see

.

Changing parameters in oXygen

Now you can supply values for parameters:

.

Change pageLayout

2 column display

Areas of customization

• Standard page features
• Layout
• Headings
• Numbering
• Output
• Table of contents generation
• Internationalization
• CSS
• Tables
• Figures and graphics
• Inline Style

Remember that in HTML a lot will be done with CSS and Java

Understanding the customization

There are six levels of interaction with the stylesheet family:

1. setting parameters

2. overriding templates provided for this purposed (listed in
customization guide)

3. writing templates which implement the empty ‘hooks’ (listed
in the customization guide)

4. adding new templates for elements not covered by the family

5. providing complete replacements for low-level templates

Always make changes by overriding— never hack the originals!

Changing things around a bit

On the command line
You might turn test.xml into test.html by typing

xsltproc -o test.html
/usr/share/xml/tei/stylesheet/xhtml2/tei.xsl
test.xml

or
saxon -o test.html

test.xml
/usr/share/xml/tei/stylesheet/xhtml2/tei.xsl

and then change the result by passing a parameter to specify which
CSS file to use:
saxon

-o test.html
test.xml
cssFile=http://localhost/mytei.css
numberheadings=false
topNavigationPanel=true
/usr/share/xml/tei/stylesheet/xhtml2/tei.xsl

Using the a wrapper stylesheet

The simplest example of making a wrapper for the HTML
stylesheets is:

<xsl:stylesheet version="2.0">
<xsl:include

href="http://www.tei-
c.org/release/xml/tei/stylesheet/latex2/tei.xsl"/>
</xsl:stylesheet>

Using the a wrapper stylesheet (2)

Now you can build on it:

<xsl:stylesheet version="2.0">
<xsl:include

href="http://www.tei-
c.org/release/xml/tei/stylesheet/latex2/tei.xsl"/>
<xsl:param name="logoFile">../../logo.png</xsl:param>
<xsl:param name="logoWidth">60</xsl:param>
<xsl:param name="logoHeight">60</xsl:param>
<xsl:param name="cssFile">myTEI.css</xsl:param>
<xsl:param name="pageLayout">CSS</xsl:param>
<xsl:param name="outputMethod">xml</xsl:param>
<xsl:param name="parentWords">The Punch Project</xsl:param>
<xsl:param name="institution">The University of Punch</xsl:param>

</xsl:stylesheet>

Using the a wrapper stylesheet (3)

And start to add your own templates:

<xsl:stylesheet version="2.0">
<xsl:include

href="http://www.tei-
c.org/release/xml/tei/stylesheet/latex2/tei.xsl"/>
<xsl:param name="logoFile">../../logo.png</xsl:param>
<xsl:param name="logoWidth">60</xsl:param>
<xsl:param name="logoHeight">60</xsl:param>
<xsl:param name="cssFile">myTEI.css</xsl:param>
<xsl:param name="pageLayout">CSS</xsl:param>
<xsl:param name="outputMethod">xml</xsl:param>
<xsl:param name="parentWords">The Punch Project</xsl:param>
<xsl:param name="parentURL">http://tei.oucs.ox.ac.uk/Punch/</xsl:param>
<xsl:param name="institution">The University of Punch</xsl:param>
<xsl:template match="tei:hi[@rend='upsidedown']">

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Organisation of stylesheet files

The stylesheets for XSLT 2.0 are divided into four directories:

common2 templates which are independent of output type

fo2 templates for making XSL FO output

xhtml2 templates for making HTML output

latex2 templates for making LaTeX output

Within each directory there is a separate file for the templates
which implement each of the TEI modules (eg
textstructure.xsl, linking.xsl, or drama.xsl); these are
included by a master file tei.xsl. This also includes a
parameterization layer in the file tei-param.xsl, and the
parameterization file from the common directory. The tei.xsl does
any necessary declaration of constants and XSL keys.

Using the XSL FO stylesheets

Each of the available XSL FO engines has some extensions to the
Recommendation, and some have limitations; the stylesheets
therefore have conditional sections to cater for this. The parameter
foEngine can be set to one of the following values

• antenna (Antenna House processor)
• fop (Apache FOP)
• passivetex (TeX-based PassiveTeX)
• xep (RenderX XEP)

Recommendations

• Use XSLT to make web pages. Easy.
• If you have LaTeX expertise, convert XML to LaTeX and prepare
typeset pages that way

• If you have a workflow which can accept XSL FO, use it
• If you need to get Word files:

• create HTML and load it into Word or OpenOffice
• convert the TEI XML into OpenOffice using the TEIOO filters

PDF generated from LaTeX

Loading HTML into Open Office

