Lecture I.
Introduction to Language Technologies

Tomaž Erjavec

Basic info

- Lecturer: http://nl.ijs.si/et/
tomaz.erjavec@ijs.si
- Work: language resources for Slovene,
linguistic annotation, standards, digital libraries
- Course homepage:
http://nl.ijs.si/et/teach/mps11-hlt/

Assessment

- Seminar work on topic connected with HLT
 - ½ quality of work
 - ½ quality of report
- Today: presentation of some possible topics +
 choosing the topic by students
- Next lecture: March 28th
 - Presentation by students on work / problems so far
- May: submission of seminar
- Each student can have 1 hr of consultations
Overview of the lecture

1. Computer processing of natural language
2. Some history
3. Applications
4. Levels of linguistic analysis

I. Computer processing of natural language

• Computational Linguistics:
 • a branch of computer science, that attempts to model the cognitive faculty of humans that enables us to produce/understand language
• Natural Language Processing:
 • a subfield of CL, dealing with specific computational methods to process language
• Human Language Technologies:
 • (the development of) useful programs to process language

Languages and computers

How do computers “understand” language?

• AI-complete:
 • To solve NLP, you’d need to solve all of the problems in AI
• Turing test
 • Engaging effectively in linguistic behavior is a sufficient condition for having achieved intelligence.
• ...But little kids can “do” NLP...
Problems

Languages have properties that humans find easy to process, but are very problematic for computers

- Ambiguity: many words, syntactic constructions, etc. have more than one interpretation
- Vagueness: many linguistic features are left implicit in the text
- Paraphrases: many concepts can be expressed in different ways

Humans use context and background knowledge; both are difficult for computers

Ambiguity

- “I scream” vs. “ice cream”
- It’s very hard to recognize speech. It’s very hard to wreck a nice beach.
- Squad helps dog bite victim. Helicopter powered by human flies.
- Jack invited Mary to the Halloween ball.

The dimensions of the problem

Many applications require only a shallow level of analysis
Structuralist and empiricist views on language

- The structuralist approach:
 - Language is a limited and orderly system based on rules.
 - Automatic processing of language is possible with rules.
 - Rules are written in accordance with language intuition.

- The empirical approach:
 - Language is the sum total of all its manifestations.
 - Generalisations are possible only on the basis of large collections of language data, which serve as a sample of the language (corpora).
 - Machine Learning: "data-driven automatic inference of rules".

Other names for the two approaches

- Rationalism vs. empiricism
- Competence vs. performance
- Deductive vs. Inductive:
 - Deductive method: from the general to specific; rules are derived from axioms and principles; verification of rules by observations.
 - Inductive method: from the specific to the general; rules are derived from specific observations; falsification of rules by observations.

Empirical approach

- Describing naturally occurring language data.
- Objective (reproducible) statements about language.
- Quantitative analysis: common patterns in language use.
- Creation of robust tools by applying statistical and machine learning approaches to large amounts of language data.
- Basis for empirical approach: corpora.
- Empiricism supported by rise in processing speed and storage, and the revolution in the availability of machine-readable texts (WWW).
II. The history of Computational Linguistics

- MT, empiricism (1950-70)
- Structuralism: generative linguistics (70-90)
- Data fights back (80-00)
- A happy marriage?
- The promise of the Web

The early years

- The promise (and need!) for machine translation
- The decade of optimism: 1954-1966
 - The spirit is willing but the flesh is weak.
 - The vodka is good but the meat is rotten
- ALPAC report 1966: no further investment in MT research; instead development of machine aids for translators, such as automatic dictionaries, and the continued support of basic research in computational linguistics
- Also quantitative language (text/author) investigations

The Generative Paradigm

Noam Chomsky’s Transformational grammar: Syntactic Structures (1957)

Two levels of representation of the structure of sentences:
- an underlying, more abstract form, termed ‘deep structure’
- the actual form of the sentence produced, called ‘surface structure’.

Deep structure is represented in the form of a hierarchical tree diagram, or “phrase structure tree," depicting the abstract grammatical relationships between the words and phrases within a sentence.

A system of formal rules specifies how deep structures are to be transformed into surface structures.
Phrase structure rules and derivation trees

\[
\begin{align*}
S & \rightarrow NP \ V \ NP \\
NP & \rightarrow N \\
NP & \rightarrow \text{Det} \ N \\
NP & \rightarrow NP \text{ that } S
\end{align*}
\]

Characteristics of generative grammar

- Research mostly in syntax, but also phonology, morphology and semantics (as well as language development, cognitive linguistics)
- Cognitive modelling and generative capacity; search for linguistic universals
- Strict formal specifications (at first), but problems of overpermissiveness

Computational linguistics

- Focus in the 70's is on cognitive simulation (with long term practical prospects..)
- The applied branch of CompLing is called Natural Language Processing
- Initially following Chomsky's theory + developing efficient methods for parsing
- Early 80's: unification based grammars (artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,..)
Problems
Disadvantage of rule-based (deep-knowledge) systems:
- Coverage (lexicon)
- Robustness (ill-formed input)
- Speed (polynomial complexity)
- Preferences (the problem of ambiguity: "Time flies like an arrow")
- Applicability?
 (more useful to know what is the name of a company than to know the deep parse of a sentence)
- EUROTRA and VERBMOBIL: success or disaster?

Back to data
- Late 1980’s: applied methods based on data (language resources)
- The increasing role of the lexicon
- (Re)emergence of corpora
- 90’s: human language technologies
 - Data-driven shallow (knowledge-poor) methods
 - Inductive approaches, esp. statistical ones (PoS tagging, collocation identification)
 - Importance of evaluation (resources, methods)

The new millennium
The emergence of the Web:
- Large and getting larger
- Multilinguality
- Simple to access, but hard to digest → Semantic Web

The promise of mobile, 'invisible' interfaces; HLT in the role of middle-ware
III. HLT applications

- Speech technologies
- Machine translation
- Question answering
- Information retrieval and extraction
- Text summarisation
- Text mining
- Dialogue systems
- Multimodal and multimedia systems
- Computer assisted: authoring; language learning; translating; lexicology; language research

More HLT applications

- Corpus tools
 - concordance software
 - tools for statistical analysis of corpora
 - tools for compiling corpora
 - tools for aligning corpora
 - tools for annotating corpora
- Translation tools
 - programs for terminology databases
 - translation memory programs
 - machine translation

Speech technologies

- speech synthesis
- speech recognition
- speaker verification
- spoken dialogue systems
- speech-to-speech translation
- speech prosody: emotional speech
- audio-visual speech (talking heads)
Machine translation

Perfect MT would require the problem of NL understanding to be solved first!

Types of MT:
• Fully automatic MT (Google translate, babel fish)
• Human-aided MT (pre and post-processing)
• Machine aided HT (translation memories)

Problem of evaluation:
• automatic (BLEU, METEOR)
• manual (expensive!)

Rule based MT

- Analysis and generation rules + lexicons
- Altavista: babel fish
- Problems: very expensive to develop, difficult to debug, gaps in knowledge
- Option for closely related languages

Statistical MT

- Parallel corpora: text in original language + translation
- Texts are first aligned by sentences
- On the basis of parallel corpora only: induce statistical model of translation
- Noisy channel model, introduced by researchers working at IBM: very influential approach
- Now used in Google translate
- Difficult getting enough parallel text
Information retrieval and extraction

- **Information retrieval (IR)** searching for documents, for information within documents and for metadata about documents.
 - “bag of words" approach
- **Information extraction (IE)** a type of IR whose goal is to automatically extract structured information, i.e. categorized and contextually and semantically well-defined data from a certain domain, from unstructured machine-readable documents.
- Related area: **Named Entity Recognition**
 - identify names, dates, numeric expression in text

Corpus linguistics

- Large collection of texts, uniformly encoded and chosen according to linguistic criteria = **corpus**
- Corpora can be (manually, automatically) annotated with linguistic information (e.g. PoS, lemma)
- Used as datasets for
 - linguistic investigations (lexicography!)
 - training or testing of programs

Concordances

- Concordance window for Corpus analysis
- Display of co-occurrence patterns in texts
IV. Levels of linguistic analysis

- Phonetics
- Phonology
- Morphology
- Syntax
- Semantics
- Discourse analysis
- Pragmatics
- + Lexicology

Phonetics

- Studies how sounds are produced; methods for description, classification, transcription
- Articulatory phonetics (how sounds are made)
- Acoustic phonetics (physical properties of speech sounds)
- Auditory phonetics (perceptual response to speech sounds)

Phonology

- Studies the sound systems of a language (of all the sounds humans can produce, only a small number are used distinctively in one language)
- The sounds are organised in a system of contrasts; can be analysed e.g. in terms of phonemes or distinctive features
Distinctive features

<table>
<thead>
<tr>
<th>Feature</th>
<th>t</th>
<th>s</th>
<th>m</th>
<th>l</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>anterior</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>coronal</td>
<td>+</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>labial</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>distributed</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>consonantal</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>sonorant</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>voiced</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>approximant</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>continuant</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>lateral</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>nasal</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>strident</td>
<td>−</td>
<td>−</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Morphology

- Studies the structure and form of words
- Basic unit of meaning: *morpheme*
- Morphemes pair meaning with form, and combine to make words: e.g. *dogs* → *dog*/*DOG*, *Noun* + *-s*/*plural*
- Process complicated by exceptions and mutations
- Morphology as the interface between phonology and syntax (and the lexicon)
Types of morphological processes

- Inflection (syntax-driven):
 run, runs, running, ran
gledati, gledam, gleda, glej, gledal,...
- Derivation (word-formation):
to run, a run, runny, runner, re-run,...
gledati, zagledati, pogledati, pogled, ogledalo,...
- Compounding (word-formation):
 zvezdogled, Herzkreislaufwiederbelebung

Inflectional Morphology

- Mapping of form to (syntactic) function
dogs → dog + s / DOG [N, pl]
- In search of regularities: talk/walk;
talks/walks; talked/walked; talking/walking
- Exceptions: take/took, wolf/wolves,
sheep/sheep
- English (relatively) simple; inflection much richer in e.g. Slavic languages

Macedonian verb paradigm

![Macedonian verb paradigm table](image)
Syntax

- How are words arranged to form sentences?
 I milk like
 I saw the man on the hill with a telescope.
- The study of rules which reveal the structure of sentences (typically tree-based)
- A “pre-processing step” for semantic analysis
- Common terms: Subject, Predicate, Object, Verb phrase, Noun phrase, Prepositional phr., Head, Complement, Adjunct,…

Syntactic theories

- Transformational Syntax
 N. Chomsky: TG, GB, Minimalism
- Distinguishes two levels of structure: deep and surface; rules mediate between the two
- Logic and Unification based approaches (*80s*) : FUG, TAG, GPSG, HPSG, …
- Phrase based vs. dependency based approaches

Example of a phrase structure and a dependency tree
Semantics

- The study of *meaning* in language
- Very old discipline, esp. philosophical semantics (Plato, Aristotle)
- Under which conditions are statements true or false; problems of quantification
- The meaning of words – lexical semantics
 spinster = unmarried female → *my brother is a spinster*

Discourse analysis and Pragmatics

- Discourse analysis: the study of connected sentences – behavioural units (anaphora, cohesion, connectivity)
- Pragmatics: language from the point of view of the users (choices, constraints, effect; pragmatic competence; speech acts; presupposition)
- Dialogue studies (turn taking, task orientation)

Lexicology

- The study of the vocabulary (lexis / lexemes) of a language (a lexical "entry" can describe less or more than one word)
- Lexica can contain a variety of information: sound, pronunciation, spelling, syntactic behaviour, definition, examples, translations, related words
- Dictionaries, mental lexicon, digital lexica
- Plays an increasingly important role in theories and computer applications
- Ontologies: WordNet, Semantic Web
HLT research fields

- **Phonetics and phonology**: speech synthesis and recognition
- **Morphology**: morphological analysis, part-of-speech tagging, lemmatisation, recognition of unknown words
- **Syntax**: determining the constituent parts of a sentence (NP, VP) and their syntactic function (Subject, Predicate, Object)
- **Semantics**: word-sense disambiguation, automatic induction of semantic resources (thesauri, ontologies)
- **Multilingual technologies**: extracting translation equivalents from corpora, machine translation
- **Internet**: information extraction, text mining, advanced search engines

Further reading

- Language Technology World
 http://www.lt-world.org/
- The Association for Computational Linguistics
 http://www.aclweb.org/ (c.f. Resources)
- Natural Language Processing – course materials
 http://www.cs.cornell.edu/Courses/cs674/2003sp/