
1

Language Technologies
“New Media and eScience” MSc Programme

Jožef Stefan International Postgraduate School

Winter Semester, 2008/09

Tomaž Erjavec

Lecture II.
Processing Words

The HLT low road:The HLT low road:
Processing wordsProcessing words

Identifying words: regular expressions Identifying words: regular expressions
and tokenisationand tokenisation
Analyzing words: finite state machines Analyzing words: finite state machines
and morphologyand morphology

What is a word?What is a word?
Smallest phonetic and semantic unit of Smallest phonetic and semantic unit of
languagelanguage
(more or less)(more or less)
We can distinguish several meanings of We can distinguish several meanings of ““wordword””: :
–– WordWord--form in text (form in text (wordword11))::

““The The banksbanks are closed today.are closed today.””
–– The abstract lexical unit (The abstract lexical unit (wordword22))

wordword11 banksbanks is the plural form of the wordis the plural form of the word22 bankbank

2

Basic steps in processing Basic steps in processing
wordswords

1.1. Tokenisation: wordTokenisation: word--forms are first identified in forms are first identified in
the textthe text
e.g. e.g. ““The banks are closedThe banks are closed””

tthe+banks+are+closedhe+banks+are+closed
2.2. Morphological analysis: the wordMorphological analysis: the word--forms are forms are

associated with their grammatical informationassociated with their grammatical information
e.g. e.g. bank+s bank+s noun+pluralnoun+plural

3.3. Lemmatisation: the Lemmatisation: the ““wordword22““, i.e. base form is , i.e. base form is
identified, e.g. identified, e.g. banbanks ks bankbank

4.4. Further information about the word (e.g. Further information about the word (e.g.
bank/nounbank/noun) is retrieved from the lexicon) is retrieved from the lexicon

Chomsky HierarchyChomsky Hierarchy

Regular languages

Context-free
languages

Context-sensitive
languages

Turing machine
languages

Regular expressions
Finite state automata

Context-free rules
Push-down automata

Context-sensitive rls.
Weird automata

Arbitrary computer
program

Phonology
Morphology

Syntax?

Syntax?

Semantics?
Pragmatics?

Artificial Artificial languages Recogniser/generator Naturallanguages Recogniser/generator Natural languageslanguages

Regular expressionsRegular expressions

A RE recognises a (possibly infinite) set of stringsA RE recognises a (possibly infinite) set of strings
Literals: a,b,c,Literals: a,b,c,čč,,……
Operators: concatenation, disjunction, repetition, groupingOperators: concatenation, disjunction, repetition, grouping
Basic examples:Basic examples:
–– /abc/ recognises {/abc/ recognises {abcabc}}
–– /(a|b)/ recognises {/(a|b)/ recognises {a, b}a, b}
–– /ab./ recognises {/ab./ recognises {aba, abb, aba, abb, abcabc,,……}}
–– /ab*/ recognises {/ab*/ recognises {a, ab, abba, ab, abb, , ……}}

Extensions: sets ([Extensions: sets ([abcabc], [^], [^abcabc]), special characters (]), special characters (\\., ., \\t, t, \\n, n,
\\d)d)
Not only search, but also substitution: Not only search, but also substitution:
s/as/a(.)c/x$1y/ (.)c/x$1y/ (changes (changes abcabc to xto xbyby))
Fast operation, implemented in many computer languages Fast operation, implemented in many computer languages
(esp. on Unix: grep, awk, (esp. on Unix: grep, awk, Perl)Perl)

3

Text preText pre--processingprocessing

Splitting Splitting rawraw text into words and punctuation text into words and punctuation
((tokenisation), and sentences (segmentation)tokenisation), and sentences (segmentation)
Not as simple as it looks:Not as simple as it looks:
kvakvaččka, ka, 2323rdrd, teacher, teacher’’s, s,
[[2,2,3H]dexamethasone, etc., kogarkoli, 3H]dexamethasone, etc., kogarkoli,
““So,So,”” said Dr. A. B. said Dr. A. B. ““who cares?who cares?””
In free text there are also errorsIn free text there are also errors
Also, different rules for different languages:Also, different rules for different languages:
4., itd., das Haus, 4., itd., das Haus, ……

Result of tokenisationResult of tokenisation
Euromoney's assessment of economic changes Euromoney's assessment of economic changes
in Slovenia has been downgraded (page 6).in Slovenia has been downgraded (page 6).

<seg id="ecmr.en.17"><seg id="ecmr.en.17">
<w>Euromoney</w><w type="rsplit">'s</w> <w>Euromoney</w><w type="rsplit">'s</w>
<w>assessment</w> <w>of</w> <w>economic</w> <w>assessment</w> <w>of</w> <w>economic</w>
<w>changes</w> <w>in</w> <w>Slovenia</w> <w>changes</w> <w>in</w> <w>Slovenia</w>
<w>has</w> <w>been</w> <w>downgraded</w> <w>has</w> <w>been</w> <w>downgraded</w>
<c type="open">(</c><w>page</w> <c type="open">(</c><w>page</w>
<w type="dig">6</w><c type="close">)</c><w type="dig">6</w><c type="close">)</c>
<c>.</c><c>.</c>

</seg></seg>

Other uses of regular Other uses of regular
expressionsexpressions

Identifying named entities (person and Identifying named entities (person and
geographical names, dates, amounts)geographical names, dates, amounts)
Structural upStructural up--translationtranslation
Searching in corporaSearching in corpora
Swiss army knife for HLTSwiss army knife for HLT

4

Identifying signaturesIdentifying signatures
<S>V Bruslju, 15. aprila 1958</S> <S>V Bruslju, 15. aprila 1958</S>
<S>V Frankfurtu na Maini, 21.junija 2001</S> <S>V Frankfurtu na Maini, 21.junija 2001</S> ((no space after day)no space after day)
<S>V Bruslju 19. julija 1999</S> <S>V Bruslju 19. julija 1999</S> (no (no commacomma after place)after place)
<S>V Bruslju, dne 27 oktobra1998.</S> <S>V Bruslju, dne 27 oktobra1998.</S> (no space after month)(no space after month)
<S>V Bruslju, 2000</S> <S>V Bruslju, 2000</S> (just year)(just year)
<S>V Helsinksih, sedemnajstega marca tiso<S>V Helsinksih, sedemnajstega marca tisoččdevetstodvaindevetdeset</S> (words!)devetstodvaindevetdeset</S> (words!)
<S>V Luksemburgu</S> <S>V Luksemburgu</S> (no date)(no date)
<S>V Dne</S> <S>V Dne</S> (just template)(just template)

%%
//<S>V<S>V\\s s #Start of sentence, 'In', space#Start of sentence, 'In', space

[A[A--TVTV--Z] Z] #Capital letter that starts place name, but not#Capital letter that starts place name, but not
'U'(redba)'U'(redba) ##””UredbaUredba””
.{2,20} .{2,20} #whatever, but not too long#whatever, but not too long
[[\\s,]s,]\\d d #some whitespace or comma, day of month#some whitespace or comma, day of month
.{0,3} .{0,3} #whatever, but not too long#whatever, but not too long
((
(januar|februar|marec|marca|april (januar|februar|marec|marca|april #month#month
|maj|junij|julij|avgust|september |maj|junij|julij|avgust|september #in two forms (cases) only#in two forms (cases) only
|septembra|oktober|oktobra|november |septembra|oktober|oktobra|november #when change of stem#when change of stem
|novembra|december|decembra)|novembra|december|decembra)
||
1?1?\\d d #or month as number#or month as number
))
.{0,3} .{0,3} #whatever, but not too long#whatever, but not too long
(19(19\\dd\\d | 20d | 20\\dd\\d) d) #exactly four digits for the year#exactly four digits for the year
\\.? .? #maybe full stop#maybe full stop
.{0,100} .{0,100} #trailing blues..#trailing blues..

<<\\/S> /S> #and end of sentence#and end of sentence
//xx
%%

MMatches 7820 timesatches 7820 times with no errors: precision = 100%, recall=?with no errors: precision = 100%, recall=?

2. Finite state automata and 2. Finite state automata and
morphologymorphology

It is simple to make a regular expression generator, difficult tIt is simple to make a regular expression generator, difficult to o
make an efficient recognisermake an efficient recogniser
FSAs are extremely fast, and only use a constant amount of FSAs are extremely fast, and only use a constant amount of
memorymemory
The languages of finite state automata (FSAs) are equivalent to The languages of finite state automata (FSAs) are equivalent to
those of regular expressions those of regular expressions
A FSA consists of:A FSA consists of:
–– a set of characters (alphabet)a set of characters (alphabet)
–– a set of states a set of states
–– a set of transitions between states, labeled by charactersa set of transitions between states, labeled by characters
–– an initial statean initial state
–– a set of final statesa set of final states

A word / string is in the language of the FSA, if, starting at tA word / string is in the language of the FSA, if, starting at the he
initial state, we can traverse the FSA via the transitions, initial state, we can traverse the FSA via the transitions,
consuming one character at a time, to arrive at a final state wiconsuming one character at a time, to arrive at a final state with th
the empty string.the empty string.

Talking sheep:Talking sheep:
–– The language: {baa!, baaa!, baaaa!, The language: {baa!, baaa!, baaaa!, ……}}
–– Regular expression: /baaa*!/Regular expression: /baaa*!/
–– FSA:FSA:

Mystery FSA:Mystery FSA:

Some simple FSAsSome simple FSAs

5

““ExtensionsExtensions””

NonNon--deterministic FSAsdeterministic FSAs

FSAs with FSAs with εε movesmoves

But metods exist that convert But metods exist that convert εεFSA to FSA to
NDFSAs to DFSAs. (however, the size NDFSAs to DFSAs. (however, the size
can increase significantly)can increase significantly)

Operations on FSAs Operations on FSAs
(and their languages)(and their languages)

ConcatenationConcatenation

ClosureClosure

UnionUnion

Intersection!Intersection!

Morphological analysis Morphological analysis
with the twowith the two--level modellevel model

Task: to arrive from the surface realisation of Task: to arrive from the surface realisation of
morphemes to their deep (lexical) structure, e.g. morphemes to their deep (lexical) structure, e.g.
dogs dogs ----> > dogdog[N][N]+s+s[pl][pl]

wolwolveves s ----> > wolfwolf[N][N]+s+s[pl][pl]

Practical benefit: this results in a smaller, easier to Practical benefit: this results in a smaller, easier to
organise lexiconorganise lexicon
The surface structure differs from the lexical one The surface structure differs from the lexical one
because of the effect of (morphobecause of the effect of (morpho--)phonological rules)phonological rules
Such rules can be expressed with a special kind of Such rules can be expressed with a special kind of
FSAs, so called Finite State TransducersFSAs, so called Finite State Transducers

6

Finite State TransducersFinite State Transducers

The alphabet is taken to be composed of The alphabet is taken to be composed of
character pairs, one from the surface and character pairs, one from the surface and
the other from the lexical alphabetthe other from the lexical alphabet
The model is extended with the nonThe model is extended with the non--
deterministic addition of pairs containing the deterministic addition of pairs containing the
null characternull character
Input to transducer:Input to transducer:
m o v e + e d (in the lexicon)m o v e + e d (in the lexicon)
m o v e 0 0 d (in the text)m o v e 0 0 d (in the text)
The model can also be used generativellyThe model can also be used generativelly

A FST ruleA FST rule
Accepted input: Accepted input:
m:m o:o v:v e:e +:0 e:0 d:dm:m o:o v:v e:e +:0 e:0 d:d
Rejected input:Rejected input:
m:m o:o v:v e:e +:0 e:e d:dm:m o:o v:v e:e +:0 e:e d:d

We assume a lexicon withWe assume a lexicon with
move+edmove+ed
Would need to extend left Would need to extend left
and right context and right context

Rule notation Rule notation
Rules are easier to understand than FSTs; Rules are easier to understand than FSTs;
----> compiler from rules to FSTs> compiler from rules to FSTs
devoicing:devoicing:
–– surface surface mabap mabap to lexical to lexical mababmabab
–– b:p b:p ___#___#
–– Lexical b corresponds to surface p if and only if the pair Lexical b corresponds to surface p if and only if the pair

occurs in the wordoccurs in the word--final positionfinal position
‘e’ insertion:
wish+s -> wishes
+ :e <= {s x z[{s c} h]} ___ s
a lexical morph boundary between s, x, z, sh, or ch
on the left side and an s on the right side must
correspond to an e on the surface level. It makes no
statements about other contexts where ' + ' may
map to an 'e'.
More examples from Slovene More examples from Slovene herehere

7

FST compositionFST composition
Serial: original Hall&Chomsky proposal; feeding and Serial: original Hall&Chomsky proposal; feeding and
bleeding rules (c.f. bleeding rules (c.f. generative phonologygenerative phonology))
Parallel: Koskenniemmi approach;Parallel: Koskenniemmi approach;
less less ‘‘transformationaltransformational’’; rule conflicts; rule conflicts

Stochastic FSAsStochastic FSAs

Finite state automata can be Finite state automata can be
supplemented by arc probabilitiessupplemented by arc probabilities
This makes then useful for statisticaly This makes then useful for statisticaly
based processing: Markov Models, based processing: Markov Models,
Viterbi algorithmViterbi algorithm

3. Storing words: the 3. Storing words: the
lexiconlexicon

From initial systems where the lexicon was From initial systems where the lexicon was ““the junkyard of the junkyard of
exceptionsexceptions”” lexica have come to play a central role in CL and lexica have come to play a central role in CL and
HTLHTL
What is a lexical entry? (multiWhat is a lexical entry? (multi--word entries, homonyms, multiple word entries, homonyms, multiple
senses)senses)
Lexica can contain a vast amount of information about an entry:Lexica can contain a vast amount of information about an entry:
–– Spelling and pronunciationSpelling and pronunciation
–– Formal syntactic and morphological propertiesFormal syntactic and morphological properties
–– Definition (in a formalism) and qualifiersDefinition (in a formalism) and qualifiers
–– Examples (frequency counts)Examples (frequency counts)
–– Translation(s)Translation(s)
–– Related words (Related words (thesaurus / ontology)thesaurus / ontology)
–– Other links (external knowledge sources)Other links (external knowledge sources)

An extremely valuable resource for HLT of a particular language An extremely valuable resource for HLT of a particular language
MRDs are useful as a basis for lexicon development, but less MRDs are useful as a basis for lexicon development, but less
than may be though (vague, sloppy)than may be though (vague, sloppy)

8

Lexicon as a FSALexicon as a FSA

The FSA approach is also used to The FSA approach is also used to
encompass the lexicon: efficient encompass the lexicon: efficient
storage, fast accessstorage, fast access
A trie:A trie:

Hierarchical organisationHierarchical organisation

With emphasis on lexica, each entry can With emphasis on lexica, each entry can
contain lots of informationcontain lots of information
But much of it is repeated over and overBut much of it is repeated over and over
The lexicon can be organised in a hierarchy The lexicon can be organised in a hierarchy
with information inherited along this with information inherited along this
hierarchyhierarchy
Various types of inheritance, and associated Various types of inheritance, and associated
problems: multiple inheritance, default problems: multiple inheritance, default
inheritanceinheritance

WordNetWordNet

a freely available semantic lexicon, a freely available semantic lexicon,
developed at developed at Princeton UniversityPrinceton University
first developed for English, now for first developed for English, now for
over 30 languagesover 30 languages
useful for various HLT tasks, such as useful for various HLT tasks, such as
MT, information retrievalMT, information retrieval
preliminary attempts exists for preliminary attempts exists for
Slovene, MacedonianSlovene, Macedonian

9

WordNet structureWordNet structure

synonymous words are grouped into sets, synonymous words are grouped into sets,
called synsetscalled synsets
synsets represent concepts, and can have synsets represent concepts, and can have
further associated information (definition, further associated information (definition,
examples of usage)examples of usage)
synsets are connected to each other with synsets are connected to each other with
various semantic links:various semantic links:
–– hypernims and hyponymshypernims and hyponyms
–– meronymsmeronyms
–– antonymsantonyms
–– ……

SummarySummary

The lecture concentrated on processing The lecture concentrated on processing
words, esp. on two basic tasks:words, esp. on two basic tasks:
Identifying words: regular expressions Identifying words: regular expressions
and tokenisationand tokenisation
Analyzing words: finite state machines Analyzing words: finite state machines
and and morphologymorphology
and a few words about lexiconsand a few words about lexicons

