

The HLT low road: Processing words

- Identifying words: regular expressions and tokenisation
- Analyzing words: finite state machines and morphology

What is a word?

- Smallest phonetic and semantic unit of language
 - (more or less)
- We can distinguish several meanings of "word":
 Word-form in text (*word¹*):
 - "The <u>banks</u> are closed today."
 - The abstract lexical unit (*word*²) word¹ banks is the plural form of the word² bank

Basic steps in processing words

- Tokenisation: word-forms are first identified in the text e.g. "The banks are closed" → the+banks+are+closed
- Morphological analysis: the word-forms are associated with their grammatical information e.g. $bank+s \rightarrow noun+plural$ 2.
- Lemmatisation: the "*word*²", i.e. base form is identified, e.g. *banks* \rightarrow *bank*
- Further information about the word (e.g. bank/noun) is retrieved from the lexicon

Text pre-processing

- Splitting raw text into words and punctuation (tokenisation), and sentences (segmentation)
- Not as simple as it looks: kvačka, 23rd, teacher's, [2,3H]dexamethasone, etc., kogarkoli, "So," said Dr. A. B. "who cares?"
- In free text there are also errors
- Also, different rules for different languages: *4., itd., das Haus, ...*

Result of tokenisation

→ Euromoney's assessment of economic changes in Slovenia has been downgraded (page 6).

→ <seg id="ecmr.en.17">

<seg us= cclint.ri/ >
<w>Euromoney</w><w type="rsplit">'s</w>
<w>assessment</w> <w>of</w> <w>economic</w>
<w>changes</w> <w>in</w> <w>Slovenia</w>
<w>has</w> <w>been</w> <w>downgraded</w>
<c type="open">(</c><w>page</w>
<w type="dig">6</w><c type="close">)</c>
</c>
</seg>

Other uses of regular expressions

- Identifying named entities (person and geographical names, dates, amounts)
- Structural up-translation
- Searching in corpora
- Swiss army knife for HLT

Morphological analysis with the two-level model

- Task: to arrive from the surface realisation of morphemes to their deep (lexical) structure, e.g. *dogs* --> dog_[N]+s_[p]
 wol<u>ves</u> --> wolf_[N]+s_[p]
 Practical benefit: this results in a smaller, easier to
- organise lexicon
- The surface structure differs from the lexical one because of the effect of (morpho-)phonological rules
- Such rules can be expressed with a special kind of FSAs, so called Finite State Transducers

Finite State Transducers

- The alphabet is taken to be composed of character pairs, one from the surface and the other from the lexical alphabet
- The model is extended with the nondeterministic addition of pairs containing the null character
- Input to transducer:
 m o v e + e d (in the lexicon)
 m o v e 0 0 d (in the text)
- The model can also be used generativelly

FST compositionSerial: original Hall&Chomsky proposal; feeding and
bleeding rules (c.f. <u>generative phonology</u>)
 Parallel: Koskenniemmi approach; less `transformational'; rule conflicts
FST ₂ FST ₂ FST ₂ FST ₃ FST ₂ FST ₃ FST ₃ FST ₃

Stochastic FSAs

- Finite state automata can be supplemented by arc probabilities
- This makes then useful for statisticaly based processing: Markov Models, Viterbi algorithm

3. Storing words: the lexicon

- From initial systems where the lexicon was "the junkyard of exceptions" lexica have come to play a central role in CL and HTL
- What is a lexical entry? (multi-word entries, homonyms, multiple senses)
- Lexica can contain a vast amount of information about an entry: Lexica can contain a vasi annount of information
 Spelling and pronunciation
 Formal syntactic and morphological properties
 Definition (in a formalism) and qualifiers
 Examples (frequency counts)
 Translation(s)
 Related words (→ thesaurus / ontology)
 Other links (external knowledge sources)
 An extremely valuable resources for HL T of a r
- An extremely valuable resource for HLT of a particular language
 MRDs are useful as a basis for lexicon development, but less than may be though (vague, sloppy)

Hierarchical organisation

- With emphasis on lexica, each entry can contain lots of information
- But much of it is repeated over and over
- The lexicon can be organised in a hierarchy with information inherited along this hierarchy
- Various types of inheritance, and associated problems: multiple inheritance, default inheritance

WordNet

- a freely available semantic lexicon, developed at <u>Princeton University</u>
- first developed for English, now for over 30 languages
- useful for various HLT tasks, such as MT, information retrieval
- preliminary attempts exists for Slovene, Macedonian

- synonymous words are grouped into sets, called synsets
- synsets represent concepts, and can have further associated information (definition, examples of usage)
- synsets are connected to each other with various semantic links:
 - hypernims and hyponyms
 - meronyms antonyms
 - ...

Summary The lecture concentrated on processing words, esp. on two basic tasks: Identifying words: regular expressions and tokenisation

- Analyzing words: finite state machines and morphology
- and a few words about lexicons