

Technicalities
 Lecturer: <u>http://nl.ijs.si/et/</u> <u>tomaz.erjavec@ijs.si</u> Course homepage: <u>http://nl.ijs.si/et/teach/mps08-hlt/</u> Assesment: Seminar work Next Wednesday: introduction to datasets Exam dates

Introduction to Human Language Technologies

- 1. Application areas of language technologies
- 2. The science of language: linguistics
- 3. Computational linguistics: some history
- 4. HLT: Processes, methods, and resources

I. Applications of HLT

- Speech technologies
- Machine translation
- Information retrieval and extraction
- Text summarisation, text mining
- Question answering, dialogue systems
- Multimodal and multimedia systems
- Computer assisted authoring; language learning; translating; lexicology; language research

Speech technologies

- speech synthesis
- speech recognition
- speaker verification (biometrics, security)
- spoken dialogue systems
- speech-to-speech translation
- speech prosody: emotional speech
- audio-visual speech (talking heads)

Machine translation

Perfect MT would require the problem of NL understanding to be solved first!

Types of MT:

- Fully automatic MT (<u>babelfish</u>, <u>Google translate</u>)
- Human-aided MT (pre and post-processing)
- Machine aided HT (translation memories)

Problem of evaluation!

- automatic (BLEU, METEOR)
- manual (expensive!)

Statistical MT

- parallel corpora: text in original language + translation
- on the basis of parallel corpora only: induce statistical model of translation
- very influential approach: now used in <u>Google translate</u>

Information retrieval and extraction

- Information retrieval (IR) is the science of searching for documents, for information within documents and for metadata about documents.
 "bag of words" approach
- There is a provided and the image of the ima
- Related area: Named Entity Extraction

 identify names, dates, numeric expression in text

II. Background: Linguistics

- What *is* language?
- The science of language
- Levels of linguistics analysis

Language
 Act of speaking in a given situation (parole or performance) The abstract system underlying the collective totality of the speech/writing behaviour of a community (langue) The knowledge of this system by an individual (competence)
<u>De Saussure</u> (structuralism ~ 1910) parole / langue <u>Chomsky</u> (generative ling. > 1960) performance / competence

What is Linguistics?

The scientific study of language

- Prescriptive vs. descriptive
- Diachronic vs. synchronic
- Performance vs. competence
- Anthropological, clinical, psycho, socio,... linguistics
- General, theoretical, formal, mathematical, computational linguistics

Levels of linguistic analysis

- Phonetics
- Phonology
- Morphology
- Syntax
- Semantics
- Discourse analysis
- Pragmatics
- + Lexicology

Distinctiv	e fe	eat	tur	es	
	t	z	m	1	í
anterior	+	+	+	+	-
coronal	+	+	_	+	-
labial	_	_	+	-	-
distributed	_	-	-	<u> </u>	-
consonantal	+	+	+	+	-
sonorant	_	_	+		+
voiced	_	+	+	+	+
approximant	t -	_	_	+	+
continuant	_	+	_	+	+
lateral	_	_		÷	_
nasat	_		+	_	_
strident	. - .	+	-	.	-

Generative phonology

A consonant becomes devoiced if it starts a word:

[C, +voiced] \rightarrow [-voiced] / #____

e.g. *#vlak#* → *#flak#*

- Rules change the structure
- Rules apply one after another (feeding and bleeding)
- (in contrast to two-level phonology)

Autosegmental phonolog				
∎ A m	nulti-layer	approach:		
B. his iron i bu la li H L H L	D. one iron bu la li ku L H L L	E. your (pl) iron am bu la li wodo // H L L H L H L	F. that iron jii ni bu la li n L H L H L I	
i bu la li	bu la li ku / L H (L) L	am bu la li wods $\land / $ H L L H \square H L	jii ni bu la li n / / L H L H I	
i bu la li H H !H L	bu la li ku L H H L	am bu la li wodo HL L H H !H L	jii ni bu la li n L H H !H H l 	

Morphology

- Studies the structure and form of words
- Basic unit of meaning: morpheme
- Morphemes pair meaning with form, and combine to make words:
- e.g. *dogs* ← *dog/DOG,Noun* + *-s/plural*Process complicated by exceptions and mutations
- Morphology as the interface between phonology and syntax (and the lexicon)

Types of morphological processes

- Inflection (syntax-driven): run, runs, running, ran gledati, gledam, gleda, glej, gledal,...
- Derivation (word-formation): to run, a run, runny, runner, re-run, ... gledati, zagledati, pogledati, pogled, ogledalo,...
- Compounding (word-formation): zvezdogled, Herzkreislaufwiederbelebung

 English (relatively) simple; inflection much richer in e.g. Slavic languages

Characteristics of Slovene inflectional morphology

- Paradigmatic morphology: fused morphs, many-to-many mappings between form and function: hodil-a[masculine dual], stol-a[singular, genitive], sosed-
- U[singular, genitive] Complex relations within and between paradigms: syncretism, alternations, multiple stems, defective paradigms, the boundary between inflection and derivation,...
- Large set of morphosyntactic descriptions (>1000) Ncmsn, Ncmsg, Ncmpn,...
- MULTEXT-East tables for Slovene

Syntax

- How are words arranged to form sentences? * I milk like
- I saw the man on the hill with a telescope. • The study of rules which reveal the structure
- of sentences (typically tree-based)
- A "pre-processing step" for semantic analysis
- Common terms:
- Subject, Predicate, Object, Verb phrase, Noun phrase, Prepositional phr., Head, Complement, Adjunct,...

Syntactic theories

- Transformational Syntax N. Chomsky: TG, GB, Minimalism
- Distinguishes two levels of structure: deep and surface; rules mediate between the two
- Logic and Unification based approaches ('80s) : FUG, TAG, GPSG, HPSG, ...
- Phrase based vs. dependency based approaches

Semantics

- The study of *meaning* in language
- Very old discipline, esp. philosophical semantics (Plato, Aristotle)
- Under which conditions are statements true or false; problems of quantification
- The meaning of words lexical semantics spinster = unmarried female → *my brother is a spinster

Discourse analysis and Pragmatics

- Discourse analysis: the study of connected sentences – behavioural units (anaphora, cohesion, connectivity)
- Pragmatics: language from the point of view of the users (choices, constraints, effect; pragmatic competence; speech acts; presupposition)
- Dialogue studies (turn taking, task orientation)

Lexicology

- The study of the vocabulary (lexis / lexemes) of a language (a lexical "entry" can describe less or more than one word)
- Lexica can contain a variety of information: sound, pronunciation, spelling, syntactic behaviour, definition, examples, translations, related words
 Dictionaries, mental lexicon, digital lexica
- Plays an increasingly important role in theories and
- computer applications
- Ontologies: WordNet, Semantic Web

III. The history of Computational Linguistics

- MT, empiricism (1950-70)
- The Generative paradigm (70-90)
- Data fights back (80-00)
- A happy marriage?
- The promise of the Web

The early years

- The promise (and need!) for machine translation
- The decade of optimism: 1954-1966
- The spirit is willing but the flesh is weak ≠ The vodka is good but the meat is rotten
- ALPAC report 1966: no further investment in MT research; instead development of machine aids for translators, such as automatic dictionaries, and the continued support of basic research in computational linguistics
- also quantitative language (text/author) investigations

Characteristics of generative grammar

- Research mostly in syntax, but also phonology, morphology and semantics (as well as language development, cognitive linguistics)
- Cognitive modelling and generative capacity; search for linguistic universals
- First strict formal specifications (at first), but problems of overpremissivness
- Chomsky's Development: Transformational Grammar (1957, 1964), ..., Government and Binding/Principles and Parameters (1981), Minimalism (1995)

Computational linguistics

- Focus in the 70's is on cognitive simulation (with long term practical prospects..)
- The applied "branch" of CompLing is called *Natural Language Processing*Initially following Chomsky's theory + developing efficient methods for parsing
- Early 80's: unification based grammars (artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,...)

Unification-based grammars

- Based on research in artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,...
- The basic data structure is a feature-structure: attribute-value, recursive, co-indexing, typed; modelled by a graph
- The basic operation is unification: information preserving, declarative
- The formal framework for various linguistic theories: GPSG, HPSG, LFG,...
- Implementable!

Problems
 Disadvantage of rule-based (deep-knowledge) systems: Coverage (lexicon) Robustness (ill-formed input) Speed (polynomial complexity) Preferences (the problem of ambiguity: "<i>Time files like an arrow</i>") Applicability? (more useful to know what is the name of a company than to know the deep parse of a sentence) EUROTRA and VERBMOBIL: success or disaster?

Back to data

- Late 1980's: applied methods based on data (the decade of "language resources")
- The increasing role of the lexicon
- (Re)emergence of corpora
- 90's: Human language technologies
- Data-driven shallow (knowledge-poor) methods
- Inductive approaches, esp. statistical ones (PoS tagging, collocation identification)
- Importance of evaluation (resources,
 - methods)

The new millennium

The emergence of the Web:

- Simple to access, but hard to digest
- Large and getting larger
- Multilinguality
- The promise of mobile, 'invisible' interfaces;
- HLT in the role of middle-ware

Processes, me resources	thods, and
The Oxford Handbook of C Ruslan Mitkov (ed.) • Text-to-Speech Synthesis • Speech Recognition • Text Segmentation • Part-of-Speech Tagging and lemmatisation • Parsing • Word-Sense Disambiguation • Anaphora Resolution • Natural Language Generation	 Finite-State Technology Statistical Methods Machine Learning Lexical Knowledge Acquisition Evaluation Sublanguages and Controlled Languages Corpora Ontologies