
1

Language Technologies
“New Media and eScience” MSc Programme

Jožef Stefan International Postgraduate School

Winter/Spring Semester, 2007/08

Tomaž Erjavec

Lecture II.
Processing Words

The HLT low road:
Processing words

• Identifying words: regular expressions and
tokenisation

• Analyzing words: finite state machines and
morphology

What is a word?
• Smallest phonetic and semantic unit of

language
(more or less)

• We can distinguish several meanings of “word”:
– Word-form in text (word1):

“The banks are closed today.”
– The abstract lexical unit (word2)

word1 banks is the plural form of the word2 bank

2

Basic steps in processing words

1. Tokenisation: word-forms are first identified in
the text
e.g. “The banks are closed”

the+banks+are+closed
2. Morphological analysis: the word-forms are

associated with their grammatical information
e.g. bank+s noun+plural

3. Lemmatisation: the “word2“, i.e. base form is
identified, e.g. banks bank

4. Further information about the word (e.g.
bank/noun) is retrieved from the lexicon

Chomsky Hierarchy

Regular languages

Context-free
languages

Context-sensitive
languages

Turing machine
languages

Regular expressions
Finite state automata

Context-free rules
Push-down automata

Context-sensitive rls.
Weird automata

Arbitrary computer
program

Phonology
Morphology

Syntax?

Syntax?

Semantics?
Pragmatics?

Artificial languages Recogniser/generator Natural languages

Regular expressions
• A RE recognises a (possibly infinite) set of strings
• Literals: a,b,c,č,…
• Operators: concatenation, disjunction, repetition, grouping
• Basic examples:

– /abc/ recognises {abc}
– /(a|b)/ recognises {a, b}
– /ab./ recognises {aba, abb, abc,…}
– /ab*/ recognises {a, ab, abb, …}

• Extensions: sets ([abc], [^abc]), special characters (\., \t, \n, \d)
• Not only search, but also substitution:

s/a(.)c/x$1y/ (changes abc to xby)
• Fast operation, implemented in many computer languages (esp. on

Unix: grep, awk, Perl)

3

Text pre-processing

• Splitting raw text into words and punctuation
(tokenisation), and sentences (segmentation)

• Not as simple as it looks:
kvačka, 23rd, teacher’s,
[2,3H]dexamethasone, etc., kogarkoli,
http://nl2.ijs.si/cgi-bin/corpus-
search?Display=KWIC&Context=60&Corpus=
ORW-SL&Query="hoditi",
“So,” said Dr. A. B. “who cares?”

• In free text there are also errors
• Also, different rules for different languages:

4., itd., das Haus, …

Result of tokenisation

Euromoney's assessment of economic changes
in Slovenia has been downgraded (page 6).

<seg id="ecmr.en.17">
<w>Euromoney</w><w type="rsplit">'s</w>
<w>assessment</w> <w>of</w> <w>economic</w>
<w>changes</w> <w>in</w> <w>Slovenia</w>
<w>has</w> <w>been</w> <w>downgraded</w>
<c type="open">(</c><w>page</w>
<w type="dig">6</w><c type="close">)</c>
<c>.</c>

</seg>

Other uses of regular
expressions

• Identifying named entities (person and
geographical names, dates, amounts)

• Structural up-translation
• Searching in corpora
• Swiss army knife for HLT

4

Identifying signatures
<S>V Bruslju, 15. aprila 1958</S>
<S>V Frankfurtu na Maini, 21.junija 2001</S> (no space after day)
<S>V Bruslju 19. julija 1999</S> (no comma after place)
<S>V Bruslju, dne 27 oktobra1998.</S> (no space after month)
<S>V Bruslju, 2000</S> (just year)
<S>V Helsinksih, sedemnajstega marca tisočdevetstodvaindevetdeset</S> (words!)
<S>V Luksemburgu</S> (no date)
<S>V Dne</S> (just template)

%%
/<S>V\s #Start of sentence, 'In', space

[A-TV-Z] #Capital letter that starts place name, but not
'U'(redba) #”Uredba”
.{2,20} #whatever, but not too long
[\s,]\d #some whitespace or comma, day of month
.{0,3} #whatever, but not too long
(
(januar|februar|marec|marca|april #month
|maj|junij|julij|avgust|september #in two forms (cases) only
|septembra|oktober|oktobra|november #when change of stem
|novembra|december|decembra)
|
1?\d #or month as number
)
.{0,3} #whatever, but not too long
(19\d\d | 20\d\d) #exactly four digits for the year
\.? #maybe full stop
.{0,100} #trailing blues..

<\/S> #and end of sentence
/x
%%

Matches 7820 times with no errors: precision = 100%, recall=?

2. Finite state automata and
morphology

• It is simple to make a regular expression generator, difficult to
make an efficient recogniser

• FSAs are extremely fast, and only use a constant amount of
memory

• The languages of finite state automata (FSAs) are equivalent to
those of regular expressions

• A FSA consists of:
– a set of characters (alphabet)
– a set of states
– a set of transitions between states, labeled by characters
– an initial state
– a set of final states

• A word / string is in the language of the FSA, if, starting at the
initial state, we can traverse the FSA via the transitions,
consuming one character at a time, to arrive at a final state with
the empty string.

• Talking sheep:
– The language: {baa!, baaa!, baaaa!, …}
– Regular expression: /baaa*!/
– FSA:

• Mystery FSA:

Some simple FSAs

5

“Extensions”

• Non-deterministic FSAs

• FSAs with ε moves

• But metods exist that convert εFSA to
NDFSAs to DFSAs. (however, the size
can increase significantly)

Operations on FSAs
(and their languages)

• Concatenation

• Closure

• Union

• Intersection!

Morphological analysis with the
two-level model

• Task: to arrive from the surface
realisation of morphemes to their deep
(lexical) structure, e.g.
dogs --> dog[N]+s[pl]
wolves --> wolf[N]+s[pl]

• Practical benefit: this results in a
smaller, easier to organise lexicon

• The surface structure differs from the
lexical one because of the effect of
(morpho-)phonological rules

6

Finite State Transducers
• The alphabet is taken to be composed of

character pairs, one from the surface and the
other from the lexical alphabet

• The model is extended with the non-
deterministic addition of pairs containing the null
character

• Input to transducer:
m o v e + e d (in the lexicon)
m o v e 0 0 d (in the text)

• The model can also be used generativelly

A FST rule
• Accepted input:

m:m o:o v:v e:e +:0 e:0 d:d
• Rejected input:

m:m o:o v:v e:e +:0 e:e d:d

• We assume a lexicon with
move+ed

• Would need to extend left
and right context

Rule notation
• Rules are easier to understand than FSTs;

--> compiler from rules to FSTs
• devoicing:

– surface mabap to lexical mabab
– b:p ___#
– Lexical b corresponds to surface p if and only if the pair

occurs in the word-final position
• ‘e’ insertion:

wish+s -> wishes
+ :e <= {s x z[{s c} h]} ___ s

• a lexical morph boundary between s, x, z, sh, or ch
on the left side and an s on the right side must
correspond to an e on the surface level. It makes no
statements about other contexts where ' + ' may map
to an 'e'.

• More examples from Slovene here

7

FST composition
• Serial: original Hall&Chomsky proposal; feeding and

bleeding rules (c.f. generative phonology)
• Parallel: Koskenniemmi approach;

less ‘transformational’; rule conflicts

Stochastic FSAs

• Finite state automata can be
supplemented by arc probabilities

• This makes then useful for statisticaly
based processing: Markov Models, Viterbi
algorithm

3. Storing words: the lexicon

• From initial systems where the lexicon was “the junkyard of
exceptions” lexica have come to play a central role in CL and
HTL

• What is a lexical entry? (multi-word entries, homonyms, multiple
senses)

• Lexica can contain a vast amount of information about an entry:
– Spelling and pronunciation
– Formal syntactic and morphological properties
– Definition (in a formalism) and qualifiers
– Examples (frequency counts)
– Translation(s)
– Related words (thesaurus / ontology)
– Other links (external knowledge sources)

• An extremely valuable resource for HLT of a particular language
• MRDs are useful as a basis for lexicon development, but less

than may be though (vague, sloppy)

8

Lexicon as a FSA

• The FSA approach is also used to
encompass the lexicon: efficient
storage, fast access

• A trie:

Hierarchical organisation

• With emphasis on lexica, each entry can contain
lots of information

• But much of it is repeated over and over
• The lexicon can be organised in a hierarchy with

information inherited along this hierarchy
• Various types of inheritance, and associated

problems: multiple inheritance, default
inheritance

WordNet

• a freely available semantic lexicon,
developed at Princeton University

• first developed for English, now for over 30
languages

• useful for various HLT tasks, such as MT,
information retrieval

• preliminary attempts exists for Slovene,
Macedonian

9

WordNet structure
• synonymous words are grouped into sets, called

synsets
• synsets represent concepts, and can have

further associated information (definition,
examples of usage)

• synsets are connected to each other with
various semantic links:
– hypernims and hyponyms
– meronyms
– antonyms
– …

Summary

The lecture concentrated on processing
words, esp. on two basic tasks:

• Identifying words: regular expressions and
tokenisation

• Analyzing words: finite state machines and
morphology

• and a few words about lexicons

