Introduction to Human Language Technologies

1. Application areas of language technologies
2. The science of language: linguistics
3. Computational linguistics: some history
4. HLT: Processes, methods, and resources

Applications of HLT
- Speech technologies
- Machine translation
- Information retrieval and extraction, text summarisation, text mining
- Question answering, dialogue systems
- Multimodal and multimedia systems
- Computer assisted: authoring; language learning; translating; lexicology; language research
Speech technologies

- speech synthesis
- speech recognition
- speaker verification (biometrics, security)
- spoken dialogue systems
- speech-to-speech translation
- speech prosody: emotional speech
- audio-visual speech (talking heads)

Machine translation

Perfect MT would require the problem of NL understanding to be solved first!

Types of MT:
- Fully automatic MT (babelfish)
- Human-aided MT (pre and post-processing)
- Machine aided HT (translation memories)

MT approaches

- rule based: rules + lexicons
- statistical: parallel corpora
- problem of evaluation
Background: Linguistics

- What is language?
- The science of language
- Levels of linguistics analysis

Language

- *Act of speaking* in a given situation (*parole* or *performance*)
- The *abstract system* underlying the collective totality of the speech/writing behaviour of a community (*langue*)
- The *knowledge of this system* by an individual (*competence*)

 De Saussure
 (structuralism ~ 1910) parole / langue

 Chomsky
 (generative ling. > 1960) performance / competence

What is Linguistics?

The scientific study of language
- Prescriptive vs. descriptive
- Diachronic vs. synchronic
- Performance vs. competence
- Anthropological, clinical, psycho, socio,… linguistics
- General, theoretical, formal, mathematical, computational linguistics
Levels of linguistic analysis

- Phonetics
- Phonology
- Morphology
- Syntax
- Semantics
- Discourse analysis
- Pragmatics
- + Lexicology

Phonetics

- Studies how sounds are produced; methods for description, classification, transcription
- Articulatory phonetics (how sounds are made)
- Acoustic phonetics (physical properties of speech sounds)
- Auditory phonetics (perceptual response to speech sounds)

Phonology

- Studies the sound systems of a language (of all the sounds humans can produce, only a small number are used distinctively in one language)
- The sounds are organised in a system of contrasts; can be analysed e.g. in terms of phonemes or distinctive features
- Segmental vs. suprasegmental phonology
- Generative phonology, metrical phonology, autosegmental phonology, … (two-level phonology)
Distinctive features

<table>
<thead>
<tr>
<th>Feature</th>
<th>t</th>
<th>s</th>
<th>m</th>
<th>l</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>anterior</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>coronal</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>labial</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>distributed</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>consonantal</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>sonorant</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>voiced</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>approximant</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>continuant</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lateral</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>nasal</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>strident</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Generative phonology

A consonant becomes devoiced if it starts a word:

\[[C, +\text{voiced}] \rightarrow [-\text{voiced}] \] / #

e.g. "vlak" \rightarrow "flak"

- Rules change the structure
- Rules apply one after another (feeding and bleeding)
- (in contrast to two-level phonology)
Autosegmental phonology

• A multi-layer approach:

Morphology

• Studies the structure and form of words
• Basic unit of meaning: morpheme
• Morphemes pair meaning with form, and combine to make words:
 e.g. dogs ← dog/DOG, Noun + -s/plural
• Process complicated by exceptions and mutations
• Morphology as the interface between phonology and syntax (and the lexicon)

Types of morphological processes

• Inflection (syntax-driven):
 run, runs, running, ran
 gledati, gledam, gleda, glej, gledal, ...

• Derivation (word-formation):
 to run, a run, runny, runner, re-run, ...
 gledati, zagledati, pogledati, pogled, ogledalo, ...

• Compounding (word-formation):
 zvездоглед,
 Herzkreislaufwiederbelebung
Inflectional Morphology

- Mapping of form to (syntactic) function
- "dogs → dog + s / DOG [N,pl]
- In search of regularities: talk/walk; talks/walks; talked/walked; talking/walking
- Exceptions: take/took, wolf/wolves, sheep/sheep
- English (relatively) simple; inflection much richer in e.g. Slavic languages

Macedonian verb paradigm

<table>
<thead>
<tr>
<th>PRESENT</th>
<th>IMPERFECT</th>
<th>ASYMETR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk</td>
<td>talk</td>
<td>talk</td>
</tr>
<tr>
<td>ताक</td>
<td>ताक</td>
<td>ताक</td>
</tr>
<tr>
<td>III. 3 sing.</td>
<td>III. 3 pl.</td>
<td>III. 3 sing.</td>
</tr>
<tr>
<td>ताक</td>
<td>ताक</td>
<td>ताक</td>
</tr>
</tbody>
</table>

Table 2.2: Finite Forms of the Macedonian Verb

The declension of Slovene adjectives
Characteristics of Slovene inflectional morphology

- Paradigmatic morphology: fused morphs, many-to-many mappings between form and function: hodil-a [masculine dual], stol-a [singular, genitive], sosed-u [singular, genitive],
- Complex relations within and between paradigms: syncretism, alternations, multiple stems, defective paradigms, the boundary between inflection and derivation,…
- Large set of morphosyntactic descriptions (>1000) Nomsn, Ncmsg, Ncmpn,…
- MULTEXT-East tables for Slovene

Syntax

- How are words arranged to form sentences?
 *I milk like
 *I saw the man on the hill with a telescope.
- The study of rules which reveal the structure of sentences (typically tree-based)
- A "pre-processing step" for semantic analysis
- Common terms: Subject, Predicate, Object, Verb phrase, Noun phrase, Prepositional phr., Head, Complement, Adjunct,…

Syntactic theories

- Transformational Syntax
 N. Chomsky: TG, GB, Minimalism
- Distinguishes two levels of structure: deep and surface; rules mediate between the two
- Logic and Unification based approaches ('80s): FUG, TAG, GPSG, HPSG,…
- Phrase based vs. dependency based approaches
Example of a phrase structure and a dependency tree

Semantics

- The study of meaning in language
- Very old discipline, esp. philosophical semantics (Plato, Aristotle)
- Under which conditions are statements true or false; problems of quantification
- The meaning of words – lexical semantics
 \[\text{spinster} = \text{unmarried female} \rightarrow \text{*my brother is a spinster} \]

Discourse analysis and Pragmatics

- Discourse analysis: the study of connected sentences – behavioural units (anaphora, cohesion, connectivity)
- Pragmatics: language from the point of view of the users (choices, constraints, effect; pragmatic competence; speech acts; presupposition)
- Dialogue studies (turn taking, task orientation)
Lexicology

• The study of the vocabulary (lexis / lexemes) of a language (a lexical “entry” can describe less or more than one word)
• Lexica can contain a variety of information: sound, pronunciation, spelling, syntactic behaviour, definition, examples, translations, related words
• Dictionaries, mental lexicon, digital lexica
• Plays an increasingly important role in theories and computer applications
• Ontologies: WordNet, Semantic Web

The history of Computational Linguistics

• MT, empiricism (1950-70)
• The Generative paradigm (70-90)
• Data fights back (80-00)
• A happy marriage?
• The promise of the Web

The early years

• The promise (and need!) for machine translation
• The decade of optimism: 1954-1966
• The spirit is willing but the flesh is weak ≠ The vodka is good but the meat is rotten
• ALPAC report 1966: no further investment in MT research; instead development of machine aids for translators, such as automatic dictionaries, and the continued support of basic research in computational linguistics
• also quantitative language (text/author) investigations
The Generative Paradigm

Noam Chomsky's Transformational grammar: Syntactic Structures (1957)

Two levels of representation of the structure of sentences:
- an underlying, more abstract form, termed 'deep structure',
- the actual form of the sentence produced, called 'surface structure'.

Deep structure is represented in the form of a hierarchical tree diagram, or "phrase structure tree," depicting the abstract grammatical relationships between the words and phrases within a sentence.

A system of formal rules specifies how deep structures are to be transformed into surface structures.

Phrase structure rules and derivation trees

\[
\begin{align*}
S & \rightarrow NP \ V \ NP \\
NP & \rightarrow N \\
NP & \rightarrow Det \ N \\
NP & \rightarrow NP \ that \ S
\end{align*}
\]

Characteristics of generative grammar

- Research mostly in syntax, but also phonology, morphology and semantics (as well as language development, cognitive linguistics)
- Cognitive modelling and generative capacity; search for linguistic universals
- First strict formal specifications (at first), but problems of overpremissivness
Computational linguistics
- Focus in the 70's is on cognitive simulation (with long term practical prospects...)
- The applied "branch" of CompLing is called *Natural Language Processing*
- Initially following Chomsky's theory + developing efficient methods for parsing
- Early 80's: unification based grammars (artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,...)

Unification-based grammars
- Based on research in artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,...
- The basic data structure is a feature-structure: attribute-value, recursive, co-indexing, typed; modelled by a graph
- The basic operation is unification: information preserving, declarative
- The formal framework for various linguistic theories: GPSG, HPSG, LFG,...
- Implementable!

An example HPSG feature structure
Problems

- Disadvantage of rule-based (deep-knowledge) systems:
 - Coverage (lexicon)
 - Robustness (ill-formed input)
 - Speed (polynomial complexity)
 - Preferences (the problem of ambiguity: "Time flies like an arrow")
 - Applicability? (more useful to know what is the name of a company than to know the deep parse of a sentence)
 - EUROTRA and VERBMOBIL: success or disaster?

Back to data

- Late 1980's: applied methods based on data (the decade of "language resources")
- The increasing role of the lexicon
- (Re)emergence of corpora
- 90's: Human language technologies
- Data-driven shallow (knowledge-poor) methods
- Inductive approaches, esp. statistical ones (PoS tagging, collocation identification, Candidé)
- Importance of evaluation (resources, methods)

The new millennium

- The emergence of the Web:
 - Simple to access, but hard to digest
 - Large and getting larger
 - Multilinguality

- The promise of mobile, 'invisible' interfaces;
- HLT in the role of middle-ware
Processes, methods, and resources

The Oxford Handbook of Computational Linguistics, Ruslan Mitkov (ed.)

- Text-to-Speech Synthesis
- Speech Recognition
- Text Segmentation
- Part-of-Speech Tagging and Lemmatisation
- Parsing
- Word-Sense Disambiguation
- Anaphora Resolution
- Natural Language Generation

- Finite-State Technology
- Statistical Methods
- Machine Learning
- Lexical Knowledge Acquisition
- Evaluation
- Sublanguages and Controlled Languages
- Corpora
- Ontologies