
1

Language Technologies

Tomaž Erjavec

“New Media and eScience” MSc Programme
Jožef Stefan International Postgraduate School

Winter/Spring Semester, 2006/07

Lecture II. 
Processing words

The HLT low road:
Processing words

Identifying words: regular expressions and Identifying words: regular expressions and 
tokenisationtokenisation
Analyzing words: finite state machines and Analyzing words: finite state machines and 
morphologymorphology

What is a word?
Smallest phonetic and semantic unit of languageSmallest phonetic and semantic unit of language
(more or less)(more or less)
We can distinguish several meanings of We can distinguish several meanings of ““wordword””: : 

WordWord--form in text (form in text (wordword11))::
““The The banksbanks are closed today.are closed today.””
The abstract lexical unit (The abstract lexical unit (wordword22))
wordword11 banksbanks is the plural form of the wordis the plural form of the word22 bankbank



2

Basic steps in processing words
1.1. Tokenisation: wordTokenisation: word--forms are first identified in the forms are first identified in the 

texttext
e.g. e.g. ““The banks are closedThe banks are closed””

tthe+banks+are+closedhe+banks+are+closed
2.2. Morphological analysis: the wordMorphological analysis: the word--forms are forms are 

associated with their grammatical informationassociated with their grammatical information
e.g. e.g. bank+s bank+s noun+pluralnoun+plural

3.3. Lemmatisation: the Lemmatisation: the ““wordword22““, i.e. base form is , i.e. base form is 
identified, e.g. identified, e.g. banbanks ks bankbank

4.4. Further information about the word is retrieved Further information about the word is retrieved 
from the lexiconfrom the lexicon

Chomsky Hierarchy

Regular languages

Context-free 
languages

Context-sensitive 
languages

Turing machine
languages

Regular expressions
Finite state automata

Context-free rules
Push-down automata

Context-sensitive rls.
Weird automata

Arbitrary computer 
program

Phonology
Morphology

Syntax?

Syntax?

Semantics?
Pragmatics?

Artificial languages Recogniser/generator Natural languages

Regular expressions
A RE recognises a (possibly infinite) set of stringsA RE recognises a (possibly infinite) set of strings
Literals: a,b,c,Literals: a,b,c,čč,,……
Operators: concatenation, disjunction, repetition, groupingOperators: concatenation, disjunction, repetition, grouping
Basic examples:Basic examples:

//abcabc/ recognises {/ recognises {abcabc}}
/(a|b)/ recognises {/(a|b)/ recognises {a, b}a, b}
/ab./ recognises {/ab./ recognises {aba, abb, aba, abb, abcabc,,……}}
/ab*/ recognises {/ab*/ recognises {a, ab, abba, ab, abb, , ……}}

Extensions: sets ([Extensions: sets ([abcabc], [^], [^abcabc]), special characters (]), special characters (\\., ., \\t, t, \\n, n, \\d)d)
Not only search, but also substitution: s/a(.)c/x$1y/ (Not only search, but also substitution: s/a(.)c/x$1y/ (abcabc to xto xbyby) ) 
Fast operation, implemented in many computer languages (esp. on Fast operation, implemented in many computer languages (esp. on 
Unix: grep, awk, Perl)Unix: grep, awk, Perl)



3

Text pre-processing
Splitting the raw text into words and punctuation Splitting the raw text into words and punctuation 
symbols (tokenisation), and sentences symbols (tokenisation), and sentences 
(segmentation)(segmentation)
Not as simple as it looks:Not as simple as it looks:
kvakvaččka, ka, 2323rdrd, teacher, teacher’’s, s, [[2,2,3H]dexamethasone, 3H]dexamethasone, 
etc., kogarkoli, etc., kogarkoli, http://nl2.ijs.si/cgihttp://nl2.ijs.si/cgi--bin/corpusbin/corpus--
search?Display=KWIC&Context=60&Corpus=Osearch?Display=KWIC&Context=60&Corpus=O
RWRW--SL&Query="hoditi"SL&Query="hoditi",,
““So,So,”” said Dr. A. B. said Dr. A. B. ““who cares?who cares?””
In free text there are also errorsIn free text there are also errors
Also, different rules for different languages:Also, different rules for different languages:
4., itd., das Haus, 4., itd., das Haus, ……

Result of tokenisation
Euromoney's assessment of economic changes in Euromoney's assessment of economic changes in 
Slovenia has been downgraded (page 6).Slovenia has been downgraded (page 6).

<seg id="ecmr.en.17"><seg id="ecmr.en.17">
<w>Euromoney</w><w type="rsplit">'s</w> <w>Euromoney</w><w type="rsplit">'s</w> 
<w>assessment</w> <w>of</w> <w>economic</w> <w>assessment</w> <w>of</w> <w>economic</w> 
<w>changes</w> <w>in</w> <w>Slovenia</w> <w>changes</w> <w>in</w> <w>Slovenia</w> 
<w>has</w> <w>been</w> <w>downgraded</w> <w>has</w> <w>been</w> <w>downgraded</w> 
<c type="open">(</c><w>page</w> <c type="open">(</c><w>page</w> 
<w type="dig">6</w><c type="close">)</c><w type="dig">6</w><c type="close">)</c>
<c>.</c><c>.</c>

</seg></seg>

Other uses of regular expressions

Identifying named entities (person and Identifying named entities (person and 
geographical names, dates, amounts)geographical names, dates, amounts)
Structural upStructural up--translationtranslation
Searching in corporaSearching in corpora
Swiss army knife for HLTSwiss army knife for HLT



4

Identifying signatures
<S>V Bruslju, 15. aprila 1958</S> <S>V Bruslju, 15. aprila 1958</S> 
<S>V Frankfurtu na Maini, 21.junija 2001</S> <S>V Frankfurtu na Maini, 21.junija 2001</S> ((no space after day)no space after day)
<S>V Bruslju 19. julija 1999</S>             <S>V Bruslju 19. julija 1999</S>             (no (no commacomma after place)after place)
<S>V Bruslju, dne 27 oktobra1998.</S>        <S>V Bruslju, dne 27 oktobra1998.</S>        (no space after month)(no space after month)
<S>V Bruslju,  2000</S>                      <S>V Bruslju,  2000</S>                      (just year)(just year)
<S>V Helsinksih, sedemnajstega marca tiso<S>V Helsinksih, sedemnajstega marca tisoččdevetstodvaindevetdeset</S> (words!)devetstodvaindevetdeset</S> (words!)
<S>V Luksemburgu</S>                         <S>V Luksemburgu</S>                         (no date)(no date)
<S>V Dne</S>                                 <S>V Dne</S>                                 (just template)(just template)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
//<S>V<S>V\\s s #Start of sentence, 'In', space#Start of sentence, 'In', space

[A[A--TVTV--Z]    Z]    #Capital letter that starts place name, but not#Capital letter that starts place name, but not
'U'(redba)'U'(redba) ##””UredbaUredba””
.{2,20}    .{2,20}    #whatever, but not too long#whatever, but not too long
[[\\s,]s,]\\d         d         #some whitespace or comma, day of month#some whitespace or comma, day of month
.{0,3}          .{0,3}          #whatever, but not too long#whatever, but not too long
((
(januar|februar|marec|marca|april    (januar|februar|marec|marca|april    #month#month
|maj|junij|julij|avgust|september   |maj|junij|julij|avgust|september   #in two forms (cases) only#in two forms (cases) only
|septembra|oktober|oktobra|november |septembra|oktober|oktobra|november #when change of stem#when change of stem
|novembra|december|decembra)|novembra|december|decembra)
||
1?1?\\d                                 d                                 #or month as number#or month as number
))
.{0,3}            .{0,3}            #whatever, but not too long#whatever, but not too long
(19(19\\dd\\d | 20d | 20\\dd\\d) d) #exactly four digits for the year#exactly four digits for the year
\\.?              .?              #maybe full stop#maybe full stop
.{0,100}          .{0,100}          #trailing blues..#trailing blues..

<<\\/S>             /S>             #and end of sentence#and end of sentence
//xx
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MMatches 7820 timesatches 7820 times with no errors: precision = 100%, recall=?with no errors: precision = 100%, recall=?

2. Finite state automata and 
morphology

It is simple to make a regular expression generator, difficult tIt is simple to make a regular expression generator, difficult to make an o make an 
efficient recogniserefficient recogniser
FSAs are extremely fast, and only use a constant amount of memorFSAs are extremely fast, and only use a constant amount of memoryy
The languages of finite state automata (FSAs) are equivalent to The languages of finite state automata (FSAs) are equivalent to those those 
of regular expressions of regular expressions 
A FSA consists of:A FSA consists of:

a set of characters (alphabet)a set of characters (alphabet)
a set of states a set of states 
a set of transitions between states, labeled by charactersa set of transitions between states, labeled by characters
an initial statean initial state
a set of final statesa set of final states

A word / string is in the language of the FSA, if, starting at tA word / string is in the language of the FSA, if, starting at the initial he initial 
state, we can traverse the FSA via the transitions, consuming onstate, we can traverse the FSA via the transitions, consuming one e 
character at a time, to arrive at a final state with the empty scharacter at a time, to arrive at a final state with the empty string.tring.

Talking sheep:Talking sheep:
The language: {baa!, baaa!, baaaa!, The language: {baa!, baaa!, baaaa!, ……}}
Regular expression: /baaa*!/Regular expression: /baaa*!/
FSA:FSA:

Mystery FSA:Mystery FSA:

Some simple FSAs



5

“Extensions”

NonNon--deterministic FSAsdeterministic FSAs

FSAs with FSAs with εε movesmoves

But metods exist that convert But metods exist that convert εεFSA to FSA to 
NDFSAs to DFSAs. (however, the size can NDFSAs to DFSAs. (however, the size can 
increase significantly)increase significantly)

Operations on FSAs 
(and their languages)

ConcateConcate--
nationnation

ClosureClosure

UnionUnion Intersection!Intersection!

Morphological analysis with the 
two-level model

Task: to arrive from the surface realisation of Task: to arrive from the surface realisation of 
morphemes to their deep (lexical) structure, e.g. morphemes to their deep (lexical) structure, e.g. 
dogdog[N][N]+s+s[pl][pl] dogs dogs butbut wolfwolf[N][N]+s+s[pl][pl] wolwolvevess
Practical benefit: this results in a smaller, easier to Practical benefit: this results in a smaller, easier to 
organise lexiconorganise lexicon
The surface structure differs from the lexical one The surface structure differs from the lexical one 
because of the effect of (morphobecause of the effect of (morpho--)phonological )phonological 
rulesrules
Such rules can be expressed with a special kind of Such rules can be expressed with a special kind of 
FSAs, so called Finite State Transducers FSAs, so called Finite State Transducers 



6

Finite State Transducers

The alphabet is taken to be composed of character The alphabet is taken to be composed of character 
pairs, one from the surface and the other from the pairs, one from the surface and the other from the 
lexical alphabetlexical alphabet
The model is extended with the nonThe model is extended with the non--deterministic deterministic 
addition of pairs containing the null characteraddition of pairs containing the null character
Input to transducer:Input to transducer:
m o v e + e d (in the lexicon)m o v e + e d (in the lexicon)
m o v e 0 0 d (in the text)m o v e 0 0 d (in the text)
The model can also be used generativellyThe model can also be used generativelly

A FST rule
Accepted input: Accepted input: 
m:m o:o v:v e:e +:0 e:0 d:dm:m o:o v:v e:e +:0 e:0 d:d
Rejected input:Rejected input:
m:m o:o v:v e:e +:0 e:e d:dm:m o:o v:v e:e +:0 e:e d:d

We assume a lexicon withWe assume a lexicon with
move+edmove+ed
Would need to extend left and Would need to extend left and 
right context right context 

Rule notation 
Rules are easier to understand than FSTs; compiler from Rules are easier to understand than FSTs; compiler from 
rules to FSTsrules to FSTs
devoicing:devoicing:

surface surface mabap mabap to lexical to lexical mababmabab
b:p b:p ___#___#
Lexical b corresponds to surface p if and only if the pair Lexical b corresponds to surface p if and only if the pair 
occurs in the wordoccurs in the word--final positionfinal position

‘e’ insertion:
wish+s -> wishes
+ :e <= {s x z[{s c} h]} ___ s
a lexical morph boundary between s, x, z, sh, or ch on the 
left side and an s on the right side must correspond to an e 
on the surface level. It makes no statements about other 
contexts where ' + ' may map to an 'e'.
More examples from Slovene More examples from Slovene herehere



7

FST composition
Serial: original Hall&Chomsky proposal; feeding Serial: original Hall&Chomsky proposal; feeding 
and bleeding rules (c.f. and bleeding rules (c.f. generative phonologygenerative phonology))
Parallel: Koskenniemmi approach;Parallel: Koskenniemmi approach;
less less ‘‘transformationaltransformational’’; rule conflicts; rule conflicts

Stochastic FSAs

Finite state machines can be supplemented Finite state machines can be supplemented 
by arc probabilitiesby arc probabilities
This makes then useful for statisticaly based This makes then useful for statisticaly based 
processing: Hidden Markov Models, Viterbi processing: Hidden Markov Models, Viterbi 
algorithmalgorithm

3. Storing words: the lexicon

From initial systems where the lexicon was From initial systems where the lexicon was ““the junkyard of the junkyard of 
exceptionsexceptions”” lexica have come to play a central role in CL and HTLlexica have come to play a central role in CL and HTL
What is a lexical entry? (multiWhat is a lexical entry? (multi--word entries, homonyms, multiple word entries, homonyms, multiple 
senses)senses)
Lexica can contain a vast amount of information about an entry:Lexica can contain a vast amount of information about an entry:

Spelling and pronunciationSpelling and pronunciation
Formal syntactic and morphological propertiesFormal syntactic and morphological properties
Definition (in a formalism) and qualifiersDefinition (in a formalism) and qualifiers
Examples (frequency counts)Examples (frequency counts)
Translation(s)Translation(s)
Related words (Related words ( thesaurus / ontology)thesaurus / ontology)
Other links (external knowledge sources)Other links (external knowledge sources)

An extremely valuable resource for HLT of a particular language An extremely valuable resource for HLT of a particular language 
MRDs are useful as a basis for lexicon development, but less thaMRDs are useful as a basis for lexicon development, but less than may n may 
be though (vague, sloppy)be though (vague, sloppy)



8

Lexicon as a FSA

The FSA approach is also used to The FSA approach is also used to 
encompass the lexicon: efficient storage, encompass the lexicon: efficient storage, 
fast accessfast access
A trie:A trie:

Hierarchical organisation

With emphasis on lexica, each entry can contain With emphasis on lexica, each entry can contain 
lots of informationlots of information
But much of it is repeated over and overBut much of it is repeated over and over
The lexicon can be organised in a hierarchy with The lexicon can be organised in a hierarchy with 
information inherited along this hierarchyinformation inherited along this hierarchy
Various types of inheritance, and associated Various types of inheritance, and associated 
problems: multiple inheritance, default inheritanceproblems: multiple inheritance, default inheritance

Summary

The lecture concentrated on processing words, The lecture concentrated on processing words, 
esp. on two basic tasks:esp. on two basic tasks:
Identifying words: regular expressions and Identifying words: regular expressions and 
tokenisationtokenisation
Analyzing words: finite state machines and Analyzing words: finite state machines and 
morphologymorphology


