Language Technologies

"New Media and eScience" MSc Programme Jožef Stefan International Postgraduate School

Winter/Spring Semester, 2006/07

Lecture I. Introduction to Human Language Technologies

<u>Tomaž Erjavec</u>

Introduction to Human Language Technologies

- 1. Application areas of language technologies
- 2. The science of language: linguistics
- 3. Computational linguistics: some history
- 4. HLT: Processes, methods, and resources

Applications of HLT

- Speech technologies
- Machine translation
- Information retrieval and extraction, text summarisation, text mining
- Question answering, dialogue systems
- Multimodal and multimedia systems
- Computer assisted: authoring; language learning; translating; lexicology; language research

Background: Linguistics

- What *is* language?
- The science of language
- Levels of linguistics analysis

- Act of speaking in a given situation (parole or performance)
- The *abstract system* underlying the collective totality of the speech/writing behaviour of a community (**langue**)
- The *knowledge of this system* by an individual (competence)

De Saussure

(structuralism ~ 1910) parole / langue <u>Chomsky</u> (generative linguistics ~ 1960) performance / competence

What is Linguistics?

- The scientific study of language
- Prescriptive vs. descriptive
- Diachronic vs. synchronic
- Performance vs. competence
- Anthropological, clinical, psycho, socio,... linguistics
- General, theoretical, formal, mathematical, computational linguistics

Levels of linguistic analysis

- Phonetics
- Phonology
- Morphology
- Syntax
- Semantics
- Discourse analysis
- Pragmatics
- \blacksquare + Lexicology

Phonetics

- Studies how sounds are produced; provides methods for their description, classification and transcription
- Articulatory phonetics (how sounds are made)
- Acoustic phonetics (physical properties of speech sounds)
 Auditory phonetics
- Auditory phonetics (perceptual response to speech sounds)

Phonology

- Studies the sound systems of a language (of all the sounds humans can produce, only a small number are used distinctively in one language)
- The sounds are organised in a system of contrasts; can be analysed e.g. in terms of *phonemes* or *distinctive features*
- Segmental vs. suprasegmental phonology
- Generative phonology, metrical phonology, autosegmental phonology, ... (two-level phonology)

л	istinctiv	- I	fa	• t		22	
D	ISUIICUV	1 5	lea	all	ur	es	
		t	z	300	1	i	
	anterior	+ +	+	+	+	-	
		+	+	-	+	-	
	labia	-	-	+	<u>.</u>	-	
	distributed	-	-		_`	-	
	consonantal	+	+	+	÷+1	-	
	soncrant	-	-	+	$- \phi_{0}$	+	
	volced	-	+	+	÷	+	
	spproximant	-	-	-	+	÷	
	continuent	_	+	-	+	+	
	Internal	-	-	-	÷	-	
	need	-	-	+	-	-	
	strident	_		-	-	-	
				-	.ξ	-	

Generative phonology

A consonant becomes devoiced if it starts a word:

[C, voiced] \rightarrow [-voiced] / #____

 $\#vlak\# \not \twoheadrightarrow \#flak\#$

- Rules change the structure
- Rules apply one after another (feeding and bleeding)
- (in contrast to two-level phonology)

Autosegmental phonology								
■ A m	ulti-layer approach:							
B. his iron i bu la li H L H L	D. one iron E. your (pl) iron bu la li ku am bu la li wo do 	F. that iron jii ni bu la li n L H L H L I						
i bu la li / H [] H L	bu la li ku am bu la li wodz /	jii ni bu la li n / / L H L H I I						
i bu la li H H !H L	bu la li ku am bu la li wo do L H H L HL L H H !H L	jii ni bu la li n L H H !H H I 						

Morphology

- Studies the structure and form of words
- Basic unit of meaning: *morpheme*
- Morphemes pair meaning with form, and combine to make words:
- e.g. $dogs \leftarrow dog/DOG, Noun + -s/plural$
- Process complicated by exceptions and mutations
- Morphology as the interface between phonology and syntax (and the lexicon)

Inflectional vs. derivational morphology

- Inflection (syntax-driven): run, runs, running, ran gledati, gledam, gleda, glej, gledal,....
- Derivation (word-formation): to run, a run, runny, runner, re-run, ... gledati, pogledati, zagledati, pogled, ogledalo,...
- Compounding: zvezdogled, Lebensversicherung

Inflectional Morphology

- Mapping of form to (syntactic) function
- $dogs \rightarrow dog + s / DOG [N,pl]$
- In search of regularities: talk/walk; talks/walks; talked/walked; talking/walking
- Exceptions: take/took, wolf/wolves, sheep/sheep Mapping
- English (relatively) simple; inflection much richer in e.g. Slavic languages

							-		-			
	1	PRESE	INT		Imperfect				AORIST			
			I	ш		Ι	п	ш		I	II	ш
		dn- "fa	л»									
	lsc	padn		-am	padn	-e	-V		padn	-a	-V	
	2sg	padn	-e	-8	padn	-e		-še	padn	-B		
	3sg	padn	-C		padn	-e		-še	padn	-0		
	1 PL	padn	-e	-me	padn	-e	-V	-me	padn	-a	-v	-me
	2PL	padn	-e	-te	padn	-e	-V	-te	padn	-a	-v	-te
	3PL	padn		-at	padn	-e		-a	padn	-a		-a
		s- "car	ry"			-	_		iznos	-1		
	lsg 2sg	nos		-am	nos	-e	-v		iznos	-1 -i	-v	
	2SG 3SG	nos	-i -i	-8	nos	-e		-še	iznos	-1 -1		
	IPL	nos	-1 -1	-me	nos	-e	-V	-BC	iznos	-1	-v	-me
	2PL	nos	-1	-me	nos	-e	-v -v	-me	iznos	-1 -i	-v	-me
	3PL	nos	-1	-te	nos	-e	-v	-te	iznos	-1	-v	-DC
		"go"	_	- 44	1108	-0	_	-a	121103	-1	_	-0
	ISG	id		-am	id	-0	-V		id	-0	-V	
	2sg	id	-0	-5	id	-0		-še	id	-0		
1	3sg	id	-e		id	-0		-Se	id	-0		
1	PL.	id	-0	-me	id	-0	- V	-me	id	-0	- V	-me
	2PL	id	-0	-te	id	-0	-V	-te	id	-0	-v	-te
	3PL	id		-at	id	-0		-0	id	-0		-0

Characteristics of Slovene inflectional morphology

- Paradigmatic morphology: fused morphs, manyto-many mappings between form and function: *hodil-a*[masculine dua], *stol-a*[singular, genitive], *sosed-u*[singular, genitive]
- Complex relations within and between paradigms: syncretism, alternations, multiple stems, defective paradigms, the boundary between inflection and derivation,...
- Large set of morphosyntactic descriptions (>1000) Nemsn, Nemsg, Nemsd, ..., Nempn,...
- MULTEXT-East tables for Slovene

Syntax

- How are words arranged to form sentences?
 *I milk like
- *I saw the man on the green hill with a telescope.*The study of rules which reveal the structure of sentences (typically tree-based)
- A "pre-processing step" for semantic analysis
- Common terms:
- Subject, Predicate, Object, Verb phrase, Noun phrase, Prepositional phrase, Head, Complement, Adjunct,...

Syntactic theories

- Transformational Syntax (N. Chomsky): TG, GB, Minimalism
- Distinguishes two levels of structure: deep and surface; rules mediate between the two
- Logic and Unification based approaches ('80s) : FUG, TAG, GPSG, HPSG, ...
- Phrase based vs. dependency based approaches

Semantics

- The study of *meaning* in language
- Very old discipline, esp. philosophical semantics (Plato, Aristotle)
- Under which conditions are statements true or false; problems of quantification
- The meaning of words lexical semantics *spinster* = unmarried female → **my brother is a spinster*

Discourse analysis and Pragmatics

- Discourse analysis: the study of connected sentences – behavioural units (anaphora, cohesion, connectivity)
- Pragmatics: language from the point of view of the users (choices, constraints, effect; pragmatic competence; speech acts; presupposition)
- Dialogue studies (turn taking, task orientation)

Lexicology

- The study of the vocabulary (lexis / lexemes) of a language (a lexical "entry" can describe less or more than one word)
- Lexica can contain a variety of information: sound, pronunciation, spelling, syntactic behaviour, definition, examples, translations, related words
- Dictionaries, mental lexicon, digital lexica
- Plays an increasingly important role in theories and computer applications
- Ontologies: WordNet, Semantic Web

The history of Computational Linguistics

- MT, empiricism (1950-70)
- The Generative paradigm (70-90)
- Data fights back (80-00)
- A happy marriage?
- The promise of the Web

The early years

- The promise (and need!) for machine translation
- The decade of optimism: 1954-1966
- The spirit is willing but the flesh is weak ≠ The vodka is good but the meat is rotten
- ALPAC report 1966: no further investment in MT research; instead development of machine aids for translators, such as automatic dictionaries, and the continued support of basic research in computational linguistics
- also quantitative language (text/author) investigations

Characteristics of generative

grammar

- Research mostly in syntax, but also phonology, morphology and semantics (as well as language development, cognitive linguistics)
- Cognitive modelling and generative capacity; search for linguistic universals
- First strict formal specifications (at first), but problems of overpremissivness
- Chomsky's Development: Transformational Grammar (1957, 1964), ..., Government and Binding/Principles and Parameters (1981), Minimalism (1995)

Computational linguistics

- Focus in the 70's is on cognitive simulation (with long term practical prospects..)
- The applied "branch" of CompLing is called *Natural Language Processing*Initially following Chomsky's theory + developing efficient methods for parsing
- Early 80's: unification based grammars (artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,..)

Unification-based grammars

- Based on research in artificial intelligence, logic programming, constraint satisfaction, inheritance reasoning, object oriented programming,...
- The basic data structure is a feature-structure: attributevalue, recursive, co-indexing, typed; modelled by a graph
- The basic operation is unification: information preserving, declarative
- The formal framework for various linguistic theories: GPSG, HPSG, LFG,...
- Implementable!

Problems

Disadvantage of rule-based (deep-knowledge) systems:

- Coverage (lexicon)
- Robustness (ill-formed input)
- Speed (polynomial complexity)
- Preferences (the problem of ambiguity: "*Time flies like an arrow*")

Applicability?

- (more useful to know what is the name of a company than to know the deep parse of a sentence)
- EUROTRA and VERBMOBIL: success or disaster?

Back to data

- Late 1980's: applied methods based on data (the decade of "language resources")
- The increasing role of the lexicon
- (Re)emergence of corpora
- 90's: Human language technologies
- Data-driven shallow (knowledge-poor) methods
- Inductive approaches, esp. statistical ones (PoS tagging, collocation identification, Candide)
- Importance of evaluation (resources, methods)

The new millennium

The emergence of the Web:

- Simple to access, but hard to digest
- Large and getting larger
- Multilinguality

The promise of mobile, 'invisible' interfaces; HLT in the role of middle-ware

Processes, methods, and resources The Oxford Handbook of Computational Linguistics, Ruslan Mitkov (ed.)

- Text-to-Speech Synthesis
 Finite-State Technology
- Speech Recognition
- Text Segmentation
- Part-of-Speech Tagging and lemmatisation
- Parsing
- Word-Sense
- Disambiguation
- Anaphora Resolution
- Natural Language Generation
- Finite-State Technol
 Statistical Methods
- Machine Learning
- Lexical Knowledge
- Acquisition
- Evaluation
- Sublanguages and Controlled Languages
- Corpora
- Ontologies