
Introduction to Customising the TEI with Roma

TEI@Oxford

July 2009

Some terminology

• The TEI encoding scheme consists of a number ofmodules
• Each module contains a number of element specifications
(marked up in TEI using the <elementSpec> element)

• Each element specification contains:
• a canonical name (<gi>) for the element, and optionally other
names in other languages

• a canonical description (also possibly translated) of its function
• a declaration of the classes to which it belongs
• a definition for each of its attributes
• a definition of its content model
• usage examples and notes

• a TEI schema specification (<schemaSpec>) is made by
selecting modules and (optionally) modifying their contents

• a TEI document containing a schema specification is called an
ODD (One Document Does it all)

What is a module?

• A convenient way of grouping together a number of element
declarations

• These are usually on a related topic or specific application
• Most chapters of P5 focus on elements drawn from a single
module, which that chapter then defines

• A TEI Schema is created by selecting modules and adding or
removing elements from them as needed

Which modules exist?
Module name Chapter
analysis Simple Analytic Mechanisms
certainty Certainty and Responsibility
core Elements Available in All TEI Documents
corpus Language Corpora
dictionaries Dictionaries
drama Performance Texts
figures Tables, Formulae, and Graphics
gaiji Representation of Non-standard Characters and Glyphs
header The TEI Header
iso-fs Feature Structures
linking Linking, Segmentation, and Alignment
msdescription Manuscript Description
namesdates Names, Dates, People, and Places
nets Graphs, Networks, and Trees
spoken Transcriptions of Speech
tagdocs Documentation Elements
tei The TEI Infrastructure
textcrit Critical Apparatus
textstructure Default Text Structure
transcr Representation of Primary Sources
verse Verse

How do you choose?

• Just choose everything (not really a good idea)
• The TEI provides a small set of predefined combinations (TEI
Lite, TEI Bare...)

• Or you could roll your own (but then you need to know what
you're choosing)

Roma a command line script, with a web front end,
designed to make this process much easier

http://www.tei-c.org/Roma/

Roma: New

Roma: Customize

Roma: Schema

Roma: Documentation

What did we just do?
We processed a pre-existing ODD file which contained (as well as
some discursive prose) the following schema specification:

<schemaSpec ident="tei_bare" start="TEI">
<moduleRef key="core"/>
<moduleRef key="tei"/>
<moduleRef key="header"/>
<moduleRef key="textstructure"/>
<elementSpec ident="abbr" mode="delete" module="core"/>
<elementSpec ident="add" mode="delete" module="core"/>

<!-- ... -->
<elementSpec ident="trailer" mode="delete" mod-

ule="textstructure"/>
<elementSpec ident="title" mode="change" module="core">
<attList>
<attDef ident="level" mode="delete"/>

</attList>
</elementSpec>

<!-- ... -->
</schemaSpec>

We selected four modules, deleted loads of elements, and also
deleted an attribute

Roma provides an interface to the detail

• The [Modules] tab shows the modules available
• Selecting a module from it shows the elements within that
module, and gives you the choice to

• include all of them (and then remove some)
• exclude all of them (and then put back the ones you want)

• You can also change an element's attribute list, and the values
they permit

Roma: Modules

Roma: Change Module

What does the Punch Project need?

A simple selection of elements, but also

• we want to allow only certain values for@type on <div>
• we want a new element to wrap the combination of a <cit>
and a comment on it: we will call it a <citCom> (you might like
to think of a better name)

Other constraints are possible -- we might want to insist that a <div
type="cartoon"> contains a graphic, for example.

The ODD advantage

We can express these constraints in our ODD, and then generate a
formal schema to enforce them using whichever schema language
we like

• TEI schemas can be generated in
• ISO RELAX NG language
• W3C Schema Language
• XML DTD language

• ODD itself defines an element's content models using a subset
of RELAX NG syntax

• Datatypes are defined in terms of W3C datatypes
• Some facilities (e.g. alternation, namespaces) cannot be
expressed in DTDs -- RELAX NG schema is recommended

• Additional constraints can be expressed in Schematron

Roma: selecting attributes

Roma: constraining attribute values

What did we just do?
Our ODD now includes something like this:

<elementSpec ident="div" module="textstructure" mode="change">
<attList>
<attDef ident="type" mode="change" usage="req">
<valList type="closed" mode="replace">
<valItem ident="cartoon"/>
<valItem ident="snippet"/>
<valItem ident="verse"/>

<!-- ... -->
</valList>

</attDef>
</attList>

</elementSpec>

Note that we can also add documentation to the ODD:

<valItem ident="cartoon">
<gloss>contains a humorous picture, usually with

dialogue underneath</gloss>
</valItem>

Defining a new element

When defining a new element, we need to consider

• its name and description
• what attributes it can carry
• what it can contain
• where it can appear in a document

The TEI class system helps us answer all these questions (except the
first).

The TEI Class System

• The TEI distinguishes over 500 elements,
• Having these organised into classes aids comprehension,
modularity, and modification.

• Attribute class: the members share common attributes
• Model class: they can appear in the same locations (and are
often semantically related)

• Classes may contain other classes
• An element can be a member of any number of classes,
irrespective of the module it belongs to.

Attribute Classes

• Attribute classes are given (usually adjectival) names
beginning with att.; e.g. att.naming, att.typed

• all members of att.naming inherit from it attributes@key and
@ref; all members of att.typed inherit from it@type and
@subtype

• If we want an element to carry the@type attribute, therefore,
we add the element to the att.typed class, rather than define
those attributes explicitly.

A very important attribute class: att.global

All elements are a member of att.global; this class provides, among
others:

@xml:id a unique identifier

@xml:lang the language of the element content

@n a number or name for an element

@rend how the element in question was rendered or
presented in the source text.

All new elements are members of this class by default.

Model Classes

• Model classes contain groups of elements which are allowed in
the same place. e.g. if you are adding an element which is
wanted wherever the <bibl> is allowed, add it to the
model.biblLike class

• Model classes are usually named with a Like or Part suffix:
• members of model.pLike are all things that ‘behave like’
paragraphs, and are permitted in the same places as paragraphs

• members of model.pPart are all things which can appear within
paragraphs. This class is subdivided into

• model.pPart.edit elements for simple editorial intervention such
as <corr>, etc.

• model.pPart.data‘data-like’ elements such as <name>, <num>,
<date> etc.

• model.pPart.msdesc extra elements for manuscript description
such as <seal> or <origPlace>

Basic Model Class Structure
Simplifying wildly, one may say that the TEI recognises three kinds
of element:

divisions high level major divisions of texts
chunks elements such as paragraphs appearing within texts

or divisions, but not other chunks
phrase-level elements elements such as highlighted phrases which

can occur only within chunks

There are ‘base model classes’ corresponding with each of these,
and also with the following groupings: three:

inter-level elements elements such as lists which can appear either
in or between chunks

components elements which can appear directly within texts or
text divisions

And yes, there is a class model.global for elements that can appear
anywhere -- at any hierarchic level.

Defining our new element <citCom>

What other elements is it like? It's like a paragraph or quotation. It's
not a phrase level element, because it must contain
more than just unstructured text.

What other elements can contain it? It can only appear within a
division, like a paragraph.

What can it contain? It must contain a citation (i.e. a quote
optionally associated with a bibliographic reference)
or something like that, followed by at least one
paragraph of commentary.

Conclusions:

• we make it a member of model.divPart
• we will have to define a special content model for it

Roma: Defining a new element

Defining a content model
• A typical TEI element defines its content by referencing classes
of element which it can contain, rather than using specific
elements.

• Content models are defined using the RELAXNG vocabulary
• Here are some very common predefined content models:
macro.paraContent content of paragraphs and similar

elements
macro.limitedContent content of prose elements that are not

used for transcription of extant materials
macro.phraseSeq a sequence of character data and

phrase-level elements
macro.phraseSeq.limited a sequence of character data and

those phrase-level elements that are not
typically used for transcribing extant documents

macro.specialPara the content model of elements which
either contain a series of component-level
elements or else contain a series of phrase-level
and inter-level elements

Roma: Defining a new element 2

What did we just do?
We added a new element specification to our ODD, like this:

<elementSpec
ident="citCom"
ns="http://www.example.org/ns/nonTEI"
mode="add">

<desc> contains a citation followed by some commentary on
it.</desc>
<classes>
<memberOf key="model.divLike"/>
<memberOf key="att.typed"/>

</classes>
<content>
<rng:ref name="cit"/>
<rng:oneOrMore>
<rng:ref name="model.pLike"/>

</rng:oneOrMore>
</content>

</elementSpec>

Note that this new element is not in the TEI namespace. It belongs
to the IPP project only!

Other kinds of constraints

• You can also constrain the content of an element or the value
of an attribute to be of a particular datatype (for example, to
insist that the element <date> contains only a date)

• This can be done by using one of a set of predefinedmacros to
define the content. Examples include

data.word a single word or token
data.name an XML Name

data.enumerated a single XML name taken from a
documented list

data.temporal.w3c a W3C date
data.truthValue a truth value (true/false)
data.language a human language

data.sex human or animal sex
• Or you can define a more complex constraint, e.g. using
Schematron

Schematron constraints
• (New at P5 release 1.4)
• An element specification can also contain a
<constraintSpec> element which contains rules about its
content expressed as ISO Schematron constraints

<elementSpec ident="div" module="teistructure" mode="change"
 xmlns:s="http://purl.oclc.org/dsdl/schematron">
<constraintSpec ident="cartoon" scheme="isoschematron">
<constraint>
<s:assert test="@type='cartoon' and .//tei:graphic"> a cartoon

must include a graphic
</s:assert>

</constraint>
</constraintSpec>

</elementSpec>

However...

• You can only add such rules by editing your ODD file: Roma
doesn't know about them.

• Not all schema languages can implement these constraints

