Standards for digital encoding

Tomaž Erjavec

Institut für Informationsverarbeitung
Geisteswissenschaftliche Fakultät
Karl-Franzens-Universität Graz

9.11.2007

Overview

1. a few words about me
2. a few words about you
3. a short introduction to standards
4. some words on XML

Practicum:
writing a small document in XML
(recipes)

Lecturer

• Tomaž Erjavec
Department of Knowledge Technologies
Jožef Stefan Institute
Ljubljana
• http://nl.ijs.si/et/
• tomaz.erjavec@ijs.si
• corpora and other language resources, standards, annotation, text-critical editions
• Web page for this course:
 http://nl.ijs.si/et/teach/graz07/standards/
Students

- background: field of study,
- exposure to
 - XML
 - namespaces
 - TEI
 - XSLT
- emails?
- expectations?

Standards

- dictionary: an obligatory uniform regulation for measurement, quantity or quality // that which specifies how something can or must be
- consensually accepted regulations, which are public and contain explicit definitions
- the main purpose is to harmonise industrial practice in various fields in order to enable interchange

Some history

- XVIII century: in France each region (village) has its own units of measurement; also, different objects (say a field or forest) are measured differently
- how to define a uniform system of measurements: search for a single unit from which it would be possible to derive all other measures
- meter: one ten-millionth of the length of the meridian through Paris, from the North Pole to the equator
- the importance of standardisation grows with the industrial revolution: mechanical and electrical engineering, construction work…
- today, standards encompass even such “soft” fields as the organisation of business (ISO 9000)
- big business: companies that check compliance with standards
Standardisation bodies

publish standards according to strictly defined procedures:

- national standards: DIN, ANSI, SIST
- international standards: IEC, ISO
- ISO International Organization for Standardization, Geneva (1947)
- ISO Technical Committees are composed of members from participating countries, who then develop and approve standards from their field
- ISO TCs can be further composed sub-committees (SC) and these can containing Working Groups (WG)

ISO TC 37

- Technical Committee on Terminology
- important for all other standards, as each standard must contain a section on terminology
- basic definitions, ISO 639, MARTIF
- in 2001 name of TC 37 changed to: and other language and content resources
- ISO TC 34 SC4: Language Resources Management

W3C

- The World Wide Web Consortium
- first recommendation was HTML (1992)
- best known versions of HTML: 3.2, 4.1
- XML 1.0 released February 1998
- Many XML related standards:
 - DOM Level 1 V1.0 (October 1998)
 - XML Namespaces V1.0 (January 1999)
 - XPath V1.0 (November 1999)
 - XSLT V1.0 (November 1999)
 - XSLT V1.0 (January 2000)
 - XSL Schema V1.0 (May 2001)
 - XLink V1.0 (June 2001)
 - XPointer V1.0 (September 2001)
 - XSL V1.0 (October 2001)
 - XML Information Set V1.0 (October 2001)
 - XPath 2.0 WD (April 2002)
Why standards for encoding of digital data?
The encoding of digital data is typically bound to a particular piece of software e.g. a text editor.

Problems:
- **longevity**: rapid advances in technology make programs obsolete very soon, and the data bound to these programs becomes unreadable
- **interchange**: difficult to use data on other platforms
- **exploitation**: difficult to re-use the data for other purposes
- **intelligibility**: the data are understandable only to the program (no public and stable specifications of the format)
- **validation**: we don’t know whether certain data is written according to the format specification or not

Language data
- **text editors**: very loose encoding, too oriented to the visual appearance of text
- **databases**: too rigid encoding, does not allow for mixture of content (text) and structure (markup)
- **ISO 8879 SGML**: (Standard Generalised Markup Language), 1986
 - defined a language for the representation of texts that will be processed by computer programs

SGML
- it defined an encoding which is:
 - very general, as it is a “metalanguage” (a language for describing other languages) and lets you design your own customised markup languages for different types of documents
 - interchangeable between computer platforms
 - resistant to changes in technology
 - enables the use of documents for various purposes
 - enables automatic validation whether a certain document is compliant with the standard
Problems with SGML

- the standard is very complex
- software for using it was either very expensive or very “academic”
- the conversion of existing documents into SGML was expensive
- so, the use of SGML was limited to large companies or academia

The Web

- HTML was an application of SGML
- but SGML compliant HTML is used by very few web pages...
- HTML is also not expressive enough for the encoding of arbitrary web data
- the need for a new standard for encoding web data that would have all the advantages of SGML without its weaknesses

XML now

- XML became very popular, and is becoming the universal medium for interchange of (language) data
- many related standards
- many freely available tools for processing XML
- many programs support import and export of data in XML
What is XML?

- XML is a definition of device-independent, system-independent methods of storing and processing texts in electronic form.
- XML is a project of W3C; hence, it is an open and non-proprietary specification.
- XML is a subset of SGML.
- XML is a “metalanguage” -- a language for describing other languages -- which lets you design your own customised markup languages for different types of documents.

What is a Markup Language?

- markup (equivalently, encoding)
 - making explicit an interpretation of text.
- markup language
 - a set of markup conventions used together for encoding texts.
- A markup language must specify:
 - how markup is to be distinguished from text,
 - what the markup means,
 - what markup is allowed,
 - what markup is required.

Structure of XML documents

```xml
<poem>
  <title>The SICK ROSE</title>
  <stanza>
    <line>O Rose thou art sick.</line>
    <line>The invisible worm,</line>
    <line>In the night</line>
    <line>In the howling storm:</line>
  </stanza>
  <stanza>
    <line>Has found out thy bed</line>
    <line>Of crimson joy:</line>
    <line>And his dark secret love</line>
    <line>Does thy life destroy.</line>
  </stanza>
</poem>
```

- document = text + mark-up
- element = start tag + content + end tag
- generic identifier = name of the tag
- element contains text or elements or both (or nothing)
XML data model

Empty elements

- elements with content:
 `<tag> ... </tag>`
- empty elements have no content:
 `<tag/>`
- used for indicating “points” in the document, for example page breaks
- formally
 `<tag/> = <tag></tag>`

Attributes

used to describe properties of elements

Example: `<table id="P1" status='revised'> ... </table>`

- given as attribute-value pairs inside the start-tag
- value must be inside matching quotation marks, single or double;
- order in which attribute-value pairs are supplied inside a tag has no significance;
- an XML processor can use the values of the attributes in any way it chooses; the id attribute is a slightly special case in that, by convention, it is always used to supply a unique value to identify a particular element occurrence, which may be used for cross reference purposes.
Comments

- Comments can appear anywhere in text (but not in markup)
- Comments start with <!-- and end with -->
- Comments cannot be nested and cannot contain --
 e.g.
 <!-- The SLICK <!-- is this an typo? --> ROSE -->
 <!-- Rose thou art sick. -->
 <!-- some lines missing -->
 <!-- here comes the second stanza -->

- Note that in XML 'meta-markup' starts with <! or ?

Example: annotated corpus

```xml
<s id="Os1.2.2.1">
  <w lemma="bli" ana="Vcps-sma">Bli</w>
  <w lemma="jasen" ana="Afomsan">jasen</w>
  <w lemma="mrzde" ana="Afomsan">mrzde</w>
  <w lemma="aprški" ana="Aopmsn">aprški</w>
  <w lemma="dan" ana="Kcsmn">dan</w>
  <w lemma="in" ana="Ccs">In</w>
  <w lemma="tura" ana="Nefpn">tura</w>
  <w lemma="bli" ana="Vcip3p-n">so</w>
  <w lemma="bli" ana="Vmps-pfa">bli</w>
  <w lemma="trinajst" ana="Mcoqd">trinajst</w>
</s>
```

Example: dictionary

```xml
<entry id="past8.458B">
  <orth type="com">adomursam</orth>
  <ana type="com">adomursam</ana>
  <info type="orth">使用する</info>
  <ana type="com">adomursam</ana>
</entry>
```
Entities

- XML documents can also contain entity references, which are, when processing the document, substituted by their interpretation (the entity).
- An entity reference starts with the character ampersand and ends with the semicolon: &…;
- A few entities are predefined in XML:
 < = <
 > = >
 & = &
 ’ = ‘ " = “
- < and & are “magic” characters and must always be escaped when using them in the text:
- 1 < 2 must be written as 1 < 2
- Procter & Gamble must be written as Procter & Gamble
- Entities are also used for other purposes

XML declaration

Every XML document must begin with an XML declaration which does two things:
- Specifies that this is an XML document, and which version of the XML standard it follows
- Specifies which character encoding the document uses:
 - <?xml version="1.0" ?>
 - <?xml version="1.0" encoding="iso-8859-1" ?>
- The default, and recommended, encoding is UTF-8

Minimal requirements

- The document starts with the XML declaration
- Tags and entities are correctly written
 Wrong: 1 < 2
- The document must be a tree:
 - Every start tag has a matching end tag
 (<name> ≠ <Name> ≠ <NAME>)
 - Elements are correctly nested
 Wrong: <a>………
 - The document has a single top-level element
 → a well-formed XML document
Splot the mistake

```xml
<greeting>Hello world!</greeting>
<greeting>Ho</greeting>
<greeting>Ho</greeting>
<greeting>world!</greeting>
<greeting>Ho</greeting>
<greeting>Ho</greeting>
<greeting>Ho world!</greeting>
<greeting>Ho</greeting>
<greeting>Ho</greeting>
<greeting>Ho world!</greeting>
```

Another bad XML document

```xml
<HTML>
<HEAD><TITLE>Links</TITLE></HEAD>
<BODY>
<H1 align=center>Interesting<BR>WWW links</H1>
<UL>
<li><A HREF="http://www.w3.org/XML">W3C XML</A>
<li><A HREF="http://xml.coverpages.org">Cover's pages</A>
</UL>
<form action="http://www.google.com/search" method=get>
<A href="http://www.google.com/">Google</a>
<input type=text name=q size=28 maxlength=256>
<input type=hidden name=meta value="lr=&hl=en">
</form>
</BODY>
</HTML>
```

Defining the rules

- A valid XML document conforms to rules which are stated in an external schema (“element grammar”) of some sort.
- A schema specifies:
 - names for all elements used
 - names and datatypes and (occasionally) default values for their attributes
 - rules about how elements can nest
 - and a few other things, depending on the schema
 - language
- n.b. A schema does not specify anything about what elements “mean”
In XML a schema is optional!

- XML allows you to make up your own tags, and doesn’t require a schema...
- The XML concept is dangerously powerful:
 - XML elements are light in semantics
 - one man’s <p> is another’s <para> (or is it?)
 - the appearance of interchangeability may be worse than its absence
- But XML is too good to ignore
 - mainstream software development
 - proliferation of tools
 - the language of the web

What can a schema (or DTD) do for you?

- ensure that your documents use only predefined elements, attributes, and entities
- enforce structural rules such as ‘every chapter must begin with a heading’ or ‘recipes must include an ingredient list’
- make sure that the same thing is always called by the same name
- schema languages vary in the amount of validation they support

Schema languages

- Schemas can be written in:
 - XML DTD Language
 (inherited from SGML)
 - The W3C schema language
 (main successor of DTDs)
 - The ISO Relax NG schema language
 (mostly used by latest version of TEI)
A simple DTD

XML document:
<city>
 <name>Graz</name>
 <inhabitants>285,470</inhabitants>
 <country>Austria</country>
</city>

DTD:
<!ELEMENT city (name, inhabitants, country)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT inhabitants (#PCDATA)>
<!ELEMENT country (#PCDATA)>

A more complex DTD

<!ELEMENT anthology (poem+)>
<!ELEMENT poem (title?, stanza+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT stanza (line+)>
<!ELEMENT line (#PCDATA)>

An element definition gives:
- the name of the element
- its content model

Content Model Operators

- { open bracket for grouping
-) close bracket
- , follows
- | or
- ? maybe
- * repeated 0 or more times
- + repeated once or more times

<!ELEMENT poem>
 <title7>
 <line7>
 <refrain7, stanza, refrain7>+

 >
Mixed content

If an element contains #PCDATA and element content, #PCDATA must always appear as the first option in an alternation, the group containing it must use the star operator; it may appear once only, and in the outermost model group.

`<!ELEMENT item1 (#PCDATA | para)*> <!-- OK -->`
`<!ELEMENT item2 (#PCDATA | para | note)*> <!-- OK -->`
`<!ELEMENT item3 (#PCDATA, para)> <!-- WRONG! -->`
`<!ELEMENT item4 (para | #PCDATA)> <!-- WRONG! -->`
`<!ELEMENT item5 (#PCDATA | para)> <!-- WRONG! -->`
`<!ELEMENT item6 (para | #PCDATA | note)> <!-- WRONG! -->`

Content model ambiguity

XML parsing is deterministic so content model must not be ambiguous.

`<!ELEMENT x (a, (b | c)> <!-- OK -->`
`<!ELEMENT x ((a, b)|(a, c)> <!-- WRONG! -->`

Empty Content

Empty elements do not have content. To distinguish them from those with content in well-formed XML documents, they have a special form: the tag ends with a slash.

- In the DTD:
 `<!ELEMENT pageBreak EMPTY>`
- In the document:
 ... `<p> The page ends here. <pageBreak/> Here starts a new one. </p> ...`
Attributes

- **In the DTD:**
 - attribute name: type default
 - `<!ATTLIST table` type CDATA #IMPLIED allowed
 - `id ID #REQUIRED necessary
 - status (draft| revised | final) “draft” default value

- **In the XML document:**
 - `<table id="tab.12" type="summary" status="revised">`
External Entities

• External entity references are substituted by the contents of files:
 <!ENTITY Chap1 SYSTEM "P4X/p4chap2.xml">
 <!ENTITY Chap2 SYSTEM "http://www.tei-c.org/P4X/p4chap2.xml">

• External entities are referenced in the document just as internal ones are:
 <body> &Chap1; &Chap2; </body>

The Document Type Declaration

Specifies:
• the root element of the document,
• the external entity containing the DTD
• and/or the (part of the) DTD contained in the internal subset
• <!DOCTYPE anthology SYSTEM "anthology.dtd">
 <!ENTITY jbw "Jabberwocky">
 <!ELEMENT anthology (poem+)>
 <!ELEMENT poem (title?, stanza+)>
 <!ELEMENT title (#PCDATA) >
 <!ELEMENT stanza (line+) >
 <!ELEMENT line (#PCDATA) >

A Complete Valid XML Document

<?xml version="1.0" encoding="us-ascii"?>
<!DOCTYPE anthology [
 <!ELEMENT anthology (poem+)>
 <!ELEMENT poem (title?, stanza+)>
 <!ELEMENT title (#PCDATA) >
 <!ELEMENT stanza (line+) >
 <!ELEMENT line (#PCDATA) >
]>
<anthology>
<poem>
<title>The SICK ROSE</title>
<stanza>
<line>O Rose thou art sick.</line>
<line>The invisible worm,</line>
<line>That flies in the night</line>
<line>In the howling storm:</line>
</stanza>
<stanza>
<line>Has found out thy bed</line>
<line>Of crimson joy:</line>
<line>And his dark secret love</line>
<line>Does thy life destroy.</line>
</stanza>
</poem>
</anthology>