Standards for language encoding: ISO

Tomaž Erjavec
Dept. of Knowledge Technologies
Jožef Stefan Institute

ESSLLI 2011
Overview of the lecture

1. How ISO works
2. ISO TC 37
3. Dates, times & languages
4. ISO Annotation Frameworks
The world's largest developer and publisher of International Standards, founded in 1947.

A network of the national standards institutes of 162 countries

Central Secretariat in Geneva coordinates the system

non-governmental organization but strong links to governments via national institutes

bridge between the public and private sectors.

ISO enables a consensus to be reached on solutions that meet both the requirements of business and the broader needs of society.

Somewhat problematic business model:
standards are published on paper and have to be bought

however, many standards (or at least the data category registries) are also freely available on the Web via other organisations.
National standard bodies

• National standards bodies: ANSI, DIN, SIST, …
• Adopt national standards
• National standards and ISO:
 • adoption
 • translating the title
 • translating the full standard
• Propose delegates for membership in particular working groups of ISO
 • Voting member
 • Observer
 • not free (for national bodies) and not paid (to delegates)
The birth (and death) of an ISO standard

- Standards are proposed, commented, voted on, and adopted (or not…); also withdrawn

In short:

1. ISO/PWI: proposed work item
2. ISO/AWI: approved work item
3. ISO/CD: committee draft
4. ISO/DIS: draft international standard
5. ISO/FDIS: final draft international standard
6. ISO: international standard

- **Official stages** (number codes)
- Show example of an ISO standard
Structure of ISO

- ISO Technical Committees (TC) are composed of members from participating countries, who then propose, develop, comment, and approve standards from their field.
- ISO TCs are further composed of:
 - Sub-Committees (SC)
 - and these contain Working Groups (WG)
 - e.g. ISO TC 37 SC 3 WG 4
ISO TC 37

- Technical Committee on Terminology
- Important for all other standards: each standard must contain a section on terminology
- In 2001 name and scope of TC 37 changed to: Technical Committee on Terminology and other language and content resources
- Subcommittees:
 - TC 37/SC 1 Principles and methods
 - TC 37/SC 2 Terminographical and lexicographical working methods
 - TC 37/SC 3 Systems to manage terminology, knowledge and content
 - TC 37/SC 4 Language resource management
II. Standards discussed at this lecture

- Dates and times
- ISO TC 37 standards for
 - Language codes
 - Feature structures
- ISO TC 37 SC4 standards and proposals for Annotation Frameworks
 - LAF, LMF, MAF, SynAF, SemAF
 - Data category registries
Dates and Times

- ISO 8601 *Data elements and interchange formats – Information interchange – Representation of dates and times*
- Dates: 1984, 1984-04, 1984-04-04
- Times: 13:00:00, 1984-04-04T13:00
- UTC - Coordinated Universal Time (GMT)
- Timezones:
 - GMT: 1984-04-04T13:00Z
 - GMT+1: 1984-04-04T13:00+01
- ISO 8601 also gives formats for durations and intervals
Language codes

- ISO 639 is the set of international standards that lists short codes of two to four letters for language names.

- When referring to languages in a computational setting, one should always use language codes defined in ISO 639.
<table>
<thead>
<tr>
<th>Standard</th>
<th>Name (Codes for the representation of names of languages – ...)</th>
<th>First edition</th>
<th>Current</th>
<th>No. in list</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 639-3</td>
<td>Part 3: Alpha-3 code for comprehensive coverage of languages</td>
<td>2007</td>
<td>2007</td>
<td>7704 + local range</td>
</tr>
<tr>
<td>ISO 639-4</td>
<td>Part 4: Implementation guidelines and general principles for language coding</td>
<td>2010-07-16</td>
<td>2010-07-16</td>
<td>(not a list)</td>
</tr>
<tr>
<td>ISO 639-6</td>
<td>Part 6: Alpha-4 representation for comprehensive coverage of language variants</td>
<td>2009-11-17</td>
<td>2009-11-17</td>
<td>?</td>
</tr>
</tbody>
</table>
ISO 639-1 (Alpha 2)

- 184 languages
 - English is represented by en
 - French is represented by fr
 - Italian is represented by it
 - Portuguese is represented by pt
 - German is represented by de (from the endonym Deutsch)
 - Spanish is represented by es (español)
 - Swedish is represented by sv (Svenska)
 - Japanese is represented by ja (but endonym is Nihongo)
- N.B. do not confuse language codes with country codes (ISO 3166)
 - e.g. Slovene language is “sl”, Slovenia is “si”
SIL database

- You can buy the text of ISO 639.
- But the lists of language codes are freely accessible:
 - SIL (also fonts, software etc.)
 - Ethnologue (much info on languages)
 - Wikipedia
Standards for Language resource management

- ISO TC 37/SC 4: Subcommittee for Language resource management
- http://www.tc37sc4.org/

Aim: Prepare standards that specify principles and methods for creating, coding, processing and managing language resources. These standards will also cover the information produced by natural language processing components.

Problems:
- “Proactive” – for many areas there is no consensus on the theoretical level
- Standard first, then applications (validation)
TC 37 / SC4 Working Groups

WG 1: Basic descriptors and mechanisms for language resources
- Terminology used in LRs, basic mechanisms & data structures, meta-data representation scheme for linguistic information

WG 2: Representation schemes
- Annotation/representation schemes for morpho-syntax, syntax, semantic content, discourse

WG 3: Multilingual text representation
- Translation memory and alignment of parallel corpora, segmentation and counting algorithms, meta-markup for internationalization and localization

WG 4: Lexical databases
- Lexical representation formats for the various types of NLP applications

WG 5: Workflow of language resource management
- Guidelines for language validation and net-based distributed cooperative work
Feature structures

- Record-field representation of (linguistic) information
- Recursive, co-indexing, (types), constraints
- FSs are a basic datatype in unification-based grammars

- Taken from TEI:
 - ISO/FDIS 24610-2 Language resource management -- Feature structures -- Part 2: Feature system declaration
AVM and ISO-FS XML representations

N.B. AVM is not the same as XML!
LAF – overall concept of *AF

- ISO/DIS 24612 Language resource management -- Linguistic annotation framework (LAF)
- Basic principles of linguistic annotation
- Types of Annotation:
 - **segmentation**: delimits linguistic elements that appear in the primary data (continuous, super-, sub-, discontinuous, landmarks)
 - **linguistic annotation**: provides linguistic information about the segments in the primary data
- Use of stand-off annotation
LAF data model

- The abstract data model
 - feature-structure graph with some operators (disjunction)
 - written in **UML** (Unified Modeling Language)
- The Dump-format(s)
 - a concrete instantiation of the data model
 - usu. expressed in XML
The idea that there should be public and stable repositories of (linguistic) data categories

GOLD: General Ontology for Linguistic Description

“encompasses linguistic concepts, definitions of these concepts and relationships between them in a freely available ontology”

MULTEXT-East: LRs for (Slavic) languages

- Morphosyntactic specifications
ISO DCR & ISOcat

- ISO 12620:2009 Terminology and other language and content resources -- Specification of data categories and management of a Data Category Registry for language resources
- ISOcat is the reference implementation of ISO 12620:2009
- Most Annotation Framework standards require that the categories used are registered at ISOcat
ISO Annotation Frameworks

- LAF
- LMF: lexica
- MAF: tokenisation and word-level linguistic annotation
- SynAF: syntactic annotation
- SemAF: various types of semantic annotation: time & space, named entities, discourse
- Also some others, not mentioned here..
ISO-24613:2008 – Lexical Markup Framework (LMF)

“an abstract metamodel that provides a common, standardized framework for the construction of computational lexicons. … of lexical objects, including morphological, syntactic, and semantic aspects."

Core specifications and extensions: morph., synt., sem.; multilingual

As other MAFs, normative reference is in UML & informative XML dump DTDs

http://www.lexicalmarkupframework.org/
Basic structure and simple morphology extension

Figure B.1 – Instance diagram for a simple example
LMF Examples

- English inflected entry
- English syntactic data
- English phonetic data
- French morphological pattern and constraint setting
- Italian syntax/semantic mapping
- Spanish lemmas and wordforms
ISO/DIS 24611 Language resource management -- Morpho-syntactic annotation framework (MAF)

Last version: 2008-12-07, Eric de la Clergerie, INRIA

Tokenisation and token morphosyntactic annotations

Syntax given in UML / RELAX NG

http://atoll.inria.fr/~clerger/MAF/
MAF metamodel
MAF, con’t

- MAF advises stand-off annotation for all levels of analysis.
- It does also support in-line annotation; in fact, most examples are of this sort, e.g.

 `<token id="t1">The</token> <token id="t2">victim</token> <token id="t3">'s</token> <token id="t4">friends</token> <token id="t5">told</token>

 …
Token attributes

Informative attributes

<token form="et cetera" id="t1">etc.</token>
<token form="tzar" id="t2">csar</token>
<token phonetic="/plateau/" id="t5">plateau</token>

Joining tokens

<token id="t1">L'</token>
<token id="t2" join="left">on</token>
<token id="t3">dit</token>

Overlapping tokens

<token form="et cetera" id="t1">etc.</token>
<token form="#dot#" id="t2" join="overlap"/>
Wordforms are separate elements:
<token id="t0">apple</token>
<wordForm lemma="apple" tag="pos.noun" tokens="t0"/>

Compound wordforms:
<token id="t0">prime</token>
<token id="t1">minister</token>
<wordForm lemma="prime_minister" tokens="t0 t1"/>

Split wordforms:
<token id="t0">auquel</token>
<wordForm lemma="à" tokens="t0"/>
<wordForm lemma="lequel" tokens="t0"/>
Morpho-syntactic content

- **Using feature-structures:**

 \[
 \begin{align*}
 \text{Using feature-structures:} \\
 &\text{<token id="t0">belle</token> } \\
 &\text{<wordForm lemma="beau" tokens="t0"> } \\
 &\text{ <fs> } \\
 &\text{ <f name="pos"><symbol value="adjective"/></f> } \\
 &\text{ <f name="adj_type"><symbol value="qualifier"/></f> } \\
 &\text{ <f name="gender"><symbol value="feminine"/></f> } \\
 &\text{ <f name="number"><symbol value="singular"/></f> } \\
 &\text{ </fs> } \\
 &\text{</wordForm>}
 \end{align*}
 \]

- **Using compact tags:**

 \[
 \begin{align*}
 \text{Using compact tags:} \\
 &\text{<wordForm tokens="t0" tag="pos.adj adj_type.qual gender.fem num.sing"/>}
 \end{align*}
 \]
Use of **URN** (Uniform Resource Name)

A URN is a URI that uses the *urn* scheme; does not imply availability of the identified resource.

- e.g.
 - `<token id="t1">Prime</token>`
 - `<token id="t2">minister</token>`
 - `<wordForm entry="urn:lexicon:en:prime_minister" tokens="t1 t2"/>`
Ambiguities

- Supports word-form and lexical ambiguities
- Also structural (token) ambiguities, using DAGs / FSMs
ISO 24615:2010 Language resource management -- Syntactic annotation framework (SyNAF)

Based on the TIGER schema and results of the EU LIRICS project

ISO defines only the meta-model, does not give a concrete dump

Stand-off annotation, DAG, DCR

Classes:
- Syntactic node class: T Node class + NT Node class
- Syntactic Edge class
- Annotation class
Graphic representation of a syntactic fragment annotated in multiple layers

Semantic annotation framework (SemAF)

Many parts:

- ISO/DIS 24617-1 Language resource management -- Semantic annotation framework (SemAF) -- Part 1: **Time and events** (SemAF-Time, ISO-TimeML)
- ISO/DIS 24617-2 SemAF -- Part 2: **Dialogue acts**
- ISO/PWI 24617-3 SemAF -- Part 3: **Named entities**
- ISO/AWI 24617-4 SemAF -- Part 4: **Semantic roles**
- ISO/AWI 24617-5 SemAF-- Part 5: **Discourse structure**
John taught 20 minutes every Monday.

John

<Event eid="e1" class="OCCURRENCE">taught</Event> <MakeInstance eiid="ei1" eventID="e1" pos="VERB" tense="PAST" aspect="NONE" polarity="POS"/>
<Timex3 tid="t1" type="DURATION" value="P20TM">20 minutes</Timex3>
<Timex3 tid="t2" type="SET" value="xxxx-wxx-1" quant="EVERY">every Monday</Timex3>
<TLink timeID="t1" relatedToTime="t2" relType="IS_INCLUDED"/>
<TLink eventInstanceId="ei1" relatedToTime="t1" relType="DURING"/>
ISO/FDIS 24616 Language resources management -- Multilingual information framework (MLIF)

MLIF provides a platform for modeling and managing multilingual information: localization, translation, multimedia annotation, document management, ...

Provides a metamodel and DCR

Also provides strategies for the interoperability and/or linking of models including, but not limited to XLIFF, TMX, SMILText, and ITS.
A standard of LISA (now defunct)

- e.g.

```xml
<tmx version="1.4">
  <header adminlang="en" creationdate="20040731T164933Z" creationtool="Heartsome TM Server" … />
  <body>
    <tu creationdate="20020930T004233Z" tuid="1091303313515">
      <tuv xml:lang="fr">
        <seg>Le processus de <hi xml:id="X3" type="term">contrôle de qualité</hi> en dix étapes qu'il a créé il y a plus de 1300 ans est beaucoup plus complet et précis que ceux existant aujourd'hui.</seg>
      </tuv>
      <tuv xml:lang="en">
        <seg>His 10-stage <hi corresp="#X3" type="term">quality control</hi> process initiated more than 1300 years ago is far more thorough and exacting than any existing today.</seg>
      </tuv>
    </tu>
  </body>
...</xml>`
Le processus de contrôle de qualité en dix étapes qu'il a créé il y a plus de 1300 ans est beaucoup plus complet et précis que ceux existant aujourd'hui.

His 10-stage quality control process initiated more than 1300 years ago is far more thorough and exacting than any existing today.