
Standards for language

encoding: XML

Tomaž Erjavec
Dept. of Knowledge Technologies

Jožef Stefan Institute

ESSLLI 2011

Overview of the lecture

1. History – SGML and HTML

2. XML

3. XML Schemas

4. Selection, Trasformations and

Querying

5. Stand-off markup

Language data

• How to define a language for the representation of
texts that will be processed by computer programs?

• text editors: very loose encoding, too oriented to the

visual appearance of text

• databases: too rigid encoding, does not allow for
mixture of content (text) and structure (markup)

• ISO 8879 SGML (Standard Generalised Markup
Language), 1986

• defined a language for the representation of
texts that will be processed by computer
programs

SGML

it defined an encoding which is:

• very general, as it is a “metalanguage” (a language
for describing other languages) and lets you design
your own customised markup languages for
different types of documents

• interchangeable between computer platforms

• resistant to changes in technology

• enables the use of documents for various purposes

• enables automatic validation whether a certain
document is compliant with the standard

Problems with SGML

 the standard was very complex

 software for using it was either very

expensive or used only in academia

 the conversion of existing documents

into SGML was expensive

 so, the use of SGML was limited

The Web

 HTML was an application of SGML

 but SGML compliant HTML is used by very
few web pages..

 HTML is also not expressive enough for the
encoding of arbitrary web data

 the need for a new standard for encoding
web data that would have all the
advantages of SGML without its
weaknesess:

 eXtended Markup Language, XML (1998)

XML now

 XML became very popular, and is has
become the universal medium for
interchange of (language) data

 many related standards

 many freely available tools for
processing XML

 many programs support import and
export of XML data

What is XML?

 XML is a definition of device-independent,

system-independent methods of storing and

processing texts in electronic form

 XML is a project of W3C; hence, it is an open

and non-proprietary specification

 XML is a subset of SGML

 XML is a “metalanguage” -- a language for

describing other languages -- which lets you

design your own customised markup

languages for different types of documents

W3C

 The World Wide Web Consortium

 first recommendation was HTML (1992)

 best known versions of HTML: 3.2, 4.1

 XML 1.0 released February 1998

 Many XML related standards:
 DOM Level 1 V1.0 (October 1998)

 XML Namespaces V1.0 (January 1999)

 XPath V1.0 (November 1999)

 XSLT V1.0 (November 1999)

 XHTML V1.0 (January 2000)

 XML Schema V1.0 (May 2001)

 XLink V1.0 (June 2001)

 XPointer V1.0 (September 2001)

 XSL V1.0 (October 2001)

 XML Information Set V1.0 (October 2001)

 XPath 2.0 WD (April 2002)

http://www.w3.org/
http://www.w3.org/XML/

What is a Markup Language?

 markup (equivalently, encoding)

 making explicit an interpretation of text

 markup language

 a set of markup conventions used together for
encoding texts.

 A markup language must specify:

 how markup is to be distinguished from text,

 what the markup means,

 what markup is allowed,

 what markup is required.

Structure of XML documents

<poem>

 <title>The SICK ROSE</title>

 <stanza>

 <line>O Rose thou art sick.</line>

 <line>The invisible worm,</line>

 <line>That flies in the night</line>

 <line>In the howling storm:</line>

 </stanza>

 <stanza>

 <line>Has found out thy bed</line>

 <line>Of crimson joy:</line>

 <line>And his dark secret love</line>

 <line>Does thy life destroy.</line>

 </stanza>

</poem>

 document =

text + mark-up

 element =

start tag + content +

end tag

 generic identifier =

name of the tag

 element contains text

or elements or both

(or nothing)

XML data model

<poem><title>The SICK ROSE</title> <stanza><line>O Rose thou art sick.</line> <line>The invisible

worm,</line> <line>That flies in the night</line> <line>In the howling storm:</line></stanza>

<stanza><line>Has found out thy bed</line> <line>Of crimson joy:</line> <line>And his dark secret

love</line> <line>Does thy life destroy.</line></stanza></poem>

~

The SICK ROSE

poem

title stanza

line line line

O Rose thou

art sick

The invisible

worm,

That flies

in the night

line line line

Has found

out thy bed
Of crimson joy

And his dark

secret love

stanza

line

In the

howling storm:

line

Does thy

life destroy.

serialization

data model

Empty elements

 elements with content:
<tag> … </tag>

 empty elements have no content:
<tag/>

 used for indicating “points” in the
document, for example page breaks

 formally
<tag/> = <tag></tag>

Attributes

Attributes are used to describe properties of elements

Example:

 <table id="P1" status='revised'> ... </table>

 given as attribute-value pairs inside the start-tag

 value must be inside matching quotation marks, single or
double;

 order in which attribute-value pairs are supplied inside a tag
has no significance;

Comments

 Comments can appear anywhere in text (but not in markup)

 Comments start with <!-- and end with -->

 e.g.
 <poem>
 <title>The SLICK <!-- is this an typo? --> ROSE</title>
 <stanza>
 <line>O Rose thou art sick.</line>
 <!-- some lines missing -->
 </stanza>
 <!-- here comes the second stanza -->
 </poem>

 Note that in XML 'meta-markup' starts with <! or <?

Example: annotated corpus

Example: dictionary

Entities

 XML documents can also contain entity references, which are,
when processing the document, substituted by their
interpretation (the entity)

 an entity reference starts with the character ampersand and
ends with the semicolon: &…;

 character references: a number (character code) is substituted
by its Unicode character, e.g. Ђ → Ђ

 a few „proper“ entities are predefined in XML:
< → < > → >
& → &
' → ' " → "

 < and & are “magic” characters and must always be escaped
when using them in the text:
 1 < 2 must be written as 1 < 2

 Procter & Gamble must be written as Procter & Gamble

 entities can also be used for other purposes

XML declaration

Every XML document must begin with an XML
declaration which does two things:

 specifies that this is an XML document,

 version of the XML standard used:
 XML 1.0: 1998, (<ascii>)

 XML 1.1: 2006 (<čačka>)

 character encoding of the document:

 <?xml version="1.0" encoding="iso-8859-1" ?>

 <?xml version="1.0" ?>
default, and recommended, encoding is UTF-8

Minimal requirements

 the document starts with the XML declaration

 tags and entities are correctly written
Wrong: 1 < 2

 the document must be a tree:

 every start tag has a matching end-tag
(<name> ≠ <Name> ≠ <NAME>)

 elements are correctly nested
Wrong: <a>………

 the document has a single top-level element

 This is then a well-formed XML document

Splot the mistake

<greeting>Hello world!</greeting>

<greeting>Hello world!</Greeting>

<greeting><grunt>Ho</grunt> world!</greeting>

<grunt>Ho <greeting>world!</greeting></grunt>

<greeting><grunt>Ho world!</greeting></grunt>

<grunt type=loud>Ho</grunt>

<grunt type="loud"></grunt>

<grunt type= "loud">

<grunt type ="loud"/>

Another bad XML document

<HTML>

<HEAD><TITLE>Links</TITLE></HEAD>

<BODY>

<H1 align=center>Interesting
WWW links</H1>

W3C XML

Cover's pages

<FORM action="http://www.google.com/search" method=get>

Google

<input type=text name=q size=28 maxlength=256>

<input type=hidden name=meta value="lr=&hl=en">

</FORM>

</BODY>

</HTML>

Exercise: mark-up a recipe

 Have a look at http://nl.ijs.si/et/teach/esslli11/mikuni.htm

 Copy to your computer the „equivalent“ XML document

http://nl.ijs.si/et/teach/esslli11/mikuni.xml

 Now open your local XML file with some simple text editor (e.g.

Wordpad)

 Also open it in your Web browser

 Now start marking up XML elements; use your best judgement on

how to name and nest elements

 Don„t worry too much about the tag names, the point of the excercise is not to get

some „perfect“ element set, but just to give you a feeling for XML syntax and

markup

 Every once in a while check if it is still well-formed by reloading it in

your browser

http://nl.ijs.si/et/teach/esslli11/mikuni.htm
http://nl.ijs.si/et/teach/esslli11/mikuni.xml

Some possible insights

 When encoding a textual source in XML you will

almost invariably loose information

 you have to be realistic: what is important for you?

 The XML element names express meaning, not

visual apperance

 There is more than one way to skin a cat –

the envisioned use of the resources (and the

time/budget!) influences what to encode and how

Defining the rules

 A valid XML document conforms to rules which are

stated in an (external) schema (“element grammar”)
of some sort.

 A schema specifies:

 names for all elements used

 names and datatypes and (occasionally) default
values for their attributes

 rules about how elements can nest

 and a few other things, depending on the
schema language

 n.b. A schema does not specify anything about
what elements mean – this is the job of the
documentation!

In XML a schema is optional

 XML allows you to make up your own tags, and
doesn‟t require a schema...

 The XML concept is dangerously powerful:

 XML elements are light in semantics

 one man‟s <p> is another‟s <para> (or is it?)

 the appearance of interchangeability may be
worse than its absence

 But XML is too good to ignore

 mainstream software development

 proliferation of tools

 the language of the web

What can a schema do for

you?

 ensure that your documents use only
predefined elements, attributes, and entities

 enforce structural rules such as „every
chapter must begin with a heading‟ or
„recipes must include an ingredient list‟

 make sure that the same thing is always
called by the same name

 schema languages vary in the amount of
validation they support

Schema languages

 Schemas can be written in:

 XML DTD Language

(inherited from SGML)

 The W3C schema language

(main successor of DTDs)

 The ISO Relax NG schema language

(used by TEI)

A simple DTD

XML document:

<city>

 <name>Graz</name>

 <inhabitants>285,470</inhabitants>

 <country>Austria</country>

</city>

DTD:

<!ELEMENT city (name, inhabitants, country)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT inhabitants (#PCDATA)>

<!ELEMENT country (#PCDATA)>

A more complex DTD

<!ELEMENT anthology (poem+)>

<!ELEMENT poem (title?, stanza+)>

<!ELEMENT title (#PCDATA) >

<!ELEMENT stanza (line+) >

<!ELEMENT line (#PCDATA) >

<anthology>

 <poem>

 <title>The SICK ROSE</title>

 <stanza>

 <line>O Rose thou art sick.</line>

 <line>The invisible worm,</line>

 <line>That flies in the night</line>

 <line>In the howling storm:</line>

 </stanza>

 <stanza>

 <line>Has found out thy bed</line>

 <line>Of crimson joy:</line>

 <line>And his dark secret love</line>

 <line>Does thy life destroy.</line>

 </stanza>

 </poem>

</anthology>

An element definition gives:

 the name of the element

 its content model

Content Model Operators

 (open bracket for grouping

) close bracket

 , follows

 | or

 ? maybe

 * repeated 0 or more times

 + repeated once or more times

<!ELEMENT poem

 (title?,

 (line+

 |

 (refrain?, (stanza, refrain?)+)

)

)

>

Mixed content

<title>The <hi>SICK</hi> ROSE</title>

If an element contains #PCDATA and element content, #PCDATA
must always appear as the first option in an alternation; the group
containing it must use the star operator; it may appear once only,
and in the outermost model group.

<!ELEMENT ltem1 (#PCDATA | para)*> <!-- OK -->

<!ELEMENT item2 (#PCDATA | para | note)*> <!-- OK -->

<!ELEMENT item3 (#PCDATA , para)*> <!-- WRONG! -->

<!ELEMENT item4 (para | #PCDATA)*> <!-- WRONG! -->

<!ELEMENT item5 (#PCDATA | para)+> <!-- WRONG! -->

<!ELEMENT item6 (para | (#PCDATA | note)*)> <!-- WRONG! -->

Empty Content

Empty elements do not have content. To

distinguish them from those with content in

well-formed XML documents, they have a

special form: the tag ends with a slash.

 In the DTD:

<!ELEMENT pageBreak EMPTY>

 In the document:

... <p> The page ends here. <pageBreak/>

Here starts a new one. </p> ...

Attributes

 In the DTD:
attribute name; type default

<!ATTLIST table

 type CDATA #IMPLIED allowed

 id ID #REQUIRED necessary

 status (draft|

 revised |

 final) "draft" default value

>

 In the XML document:

<table id="tab.12" type= "summary" status= "revised">

A Complete Valid XML

Document
<?xml version="1.0" encoding="us-ascii"?>

<!DOCTYPE anthology [

 <!ELEMENT anthology (poem+)>

 <!ELEMENT poem (title?, stanza+)>

 <!ELEMENT title (#PCDATA) >

 <!ELEMENT stanza (line+) >

 <!ELEMENT line (#PCDATA) >

]>

<anthology>

 <poem>

 <title>The SICK ROSE</title>

 <stanza>

 <line>O Rose thou art sick.</line>

 <line>The invisible worm,</line>

 <line>That flies in the night</line>

 <line>In the howling storm:</line>

 </stanza>

 <stanza>

 <line>Has found out thy bed</line>

 <line>Of crimson joy:</line>

 <line>And his dark secret love</line>

 <line>Does thy life destroy.</line>

 </stanza>

 </poem>

</anthology>

Exercise: make a DTD for your

XML recipe

 Put the DTD directly into your XML file; open

it with a browser to see if it validates

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE recipe [

 <!ELEMENT recipe (…)>

 …

]>

<recipe>

…

</recipe>

Standard schemas

 There are by now many standard data formats,

which are expressed in XML schemas + associated

documentation

 Docbook: software manuals

 SVG: Scalable vector graphics

 MathML: Mathematical Markup Language

 MusicXML: Music Notation

DocBook example

MathML

MusicXML

XML Namespaces

 A XML document could usefully contain elements and attributes that

are defined for and used by multiple software modules.

 Such documents pose problems of recognition and collision.

 Therefore document constructs should have universal names, whose

scope extends beyond their containing document;

 Such universal names are defined by the XML Namespaces

specification

 Namespaces make use of the notion of a Uniform Resource

Identifier, (URI), which identifies a resource by meta-information of

any kind; in contrast, an URL locates a resource on the net, which

means if you have a URL and the appropriate protocol you can

retrieve the resource.

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/

xmlns

• Two-part naming system for element types and attributes

• The xmlns prefixed attributes give the URI and the local prefix

of the namespaces

• „Qualified names“ consist of prefix, colon and local part of the

name

• Note: The URI is not a URL - it does not need to refer to a DTD or to

be accessible

xmlns

• The default namespace is introduced by the attribute xmlns,

without a local prefix

• The prefix xml is by definition bound to the namespace name

http://www.w3.org/XML/1998/namespace

• xml:id and xml:lang are predefined attributes in XML

http://www.w3.org/XML/1998/namespace

Non-hierarchical structures

 XML has a tree-based information model

 But not all structures are trees

 The standard case is when we want to

model several hierarchies (trees) over the

same text, e.g.

 document structure +

 linguistic structure +

 physical structure

Crossing hierarchies

<l>Scorn not the sonnet; critic, you have frowned,</l>

<l>Mindless of its just honours; with this key</l>

<l>Shakespeare unlocked his heart; the melody</l>

<l>Of this small lute gave ease to Petrarch's wound.</l>

 <seg>Scorn not the sonnet;</seg>

 <seg>critic, you have frowned, Mindless of its just honours;</seg>

 <seg>with this key Shakespeare unlocked his heart;</seg>

 <seg>the melody Of this small lute gave ease to Petrarch's wound.</seg>

The two markups cannot be simply combined

within one document

Stand-off markup

 Many ways have been suggested how to

overcome this limitation

 All have associated problems:

 more complex processing

 more difficult validation

 For HLT the most popular mechanism is

stand-off markup:

 the annotations are not part of the document,

but only point to it

Stand-off example

<l>

 <w xml:id="w001">Scorn</w>

 <w xml:id="w002">not</w>

 <w xml:id="w003">the</w>

 <w xml:id="w004">sonnet</w>;

 <w xml:id="w005">critic</w>,

 <w xml:id="w006">you</w>

 <w xml:id="w007">have</w>

 <w xml:id="w008">frowned</w>,

</l>

…

<!-- elsewhere in the current document -->

<seg><xi:include xpointer="range(element(w001),element(w004))"/></seg>

<seg><xi:include xpointer="range(element(w005),element(w013))"/></seg>

XML related recommendations

• XML is a good development, storage

and interchange format – but what can

you do with it?

• Transform: into HTML, PDF, DB, …

• Search: find information in XML docs

• How do you do this?

• Using XML related recommendations

• XPath, XSLT, XQuery

XPath

• The primary purpose of XPath is to address

parts of an XML document;

• XPath uses a compact, non-XML syntax

similar to the path notation in URLs

• XPath models an XML document as a tree

of nodes

• Expression evaluation occurs with respect to

its context node

XPath examples

 para selects all „para“element children of the context node

 * selects all element children of the context node

 @name selects the attribute „name“ of the context node

 @* selects all the attributes of the context node

 para[1] selects the first „para“ child of the context node

 . selects the context node

 .//para selects all „para“ grandchildren of the context node

 /doc/chapter[2]/section[1]

selects the 1st section of the 2th chapter of the doc child of the

root node

XPath cont.

• You can also select the parent, ancestor,

sibling, etc. nodes, e.g.

ancestor::section

following-sibling::para[1]

• Other constrains:

para[@id], para[hi], para[ancestor::section]

• XPath functions:

substring-after(para,„Author: „)

fn:replace(para,„x*„,„y„) //XPath 2.0//

XSLT

• A language in which to write transformations

(stylesheets) for XML document

• XSLT stylesheets are written in XML

• Several free XSLT processors exist (e.g.

xsltproc, saxon)

• Output is XML, HTML or text

• Again, takes the XML document as a tree

• Uses XPath to select nodes to process

XSLT example
<?xml version="1.0"?>

<xsl:stylesheet version="1.0" xmlns:xsl=

 "http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

 </xsl:template>

</xsl:stylesheet>

<?xml version="1.0"?>

<catalog>

 <cd>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

.

.

</catalog>

XQuery

 For searching in XML documents

 Somewhat similar to SQL

 Uses XPath

 Used by native XML databases, e.g.

eXist

Starting with XML

 all browsers show XML

 editing can be done in plain text editor, but an XML editor is

better (Oxygen)

 validation to schema can be done in XML editors, by browsers

(to an extent) or by stand-alone programs

 for XSLT processing, use Saxon (or via an XML editor)

 many many tutorials on the Web!

