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Language data 

• How to define a language for the representation of 
texts that will be processed by computer programs? 

 
• text editors: very loose encoding, too oriented to the 

visual appearance of text 

• databases: too rigid encoding, does not allow for 
mixture of content (text) and structure (markup) 

• ISO 8879 SGML (Standard Generalised Markup 
Language),  1986  

• defined a language for the representation of 
texts that will be processed by computer 
programs 



SGML 

it defined an encoding which is: 

• very general, as it is a “metalanguage” (a language 
for describing other languages) and lets you design 
your own customised markup languages for 
different types of documents 

• interchangeable between computer platforms 

• resistant to changes in technology 

• enables the use of documents for various purposes 

• enables automatic validation whether a certain 
document is compliant with the standard 

 



Problems with SGML 

 the standard was very complex 

 software for using it was either very 

expensive or used only in academia 

 the conversion of existing documents 

into SGML was expensive 

 so, the use of SGML was limited 



The Web 

 HTML was an application of SGML 

 but SGML compliant HTML is used by very 
few web pages.. 

 HTML is also not expressive enough for the 
encoding of arbitrary web data 

 the need for a new standard for encoding 
web data that would have all the 
advantages of SGML without its 
weaknesess: 

 eXtended Markup Language, XML (1998) 



XML now 

 XML became very popular, and is has 
become the universal medium for 
interchange of (language) data 

 many related standards 

 many freely available tools for 
processing XML 

 many programs support import and 
export of XML data 



What is XML? 

 XML is a definition of device-independent, 

system-independent methods of storing and 

processing texts in electronic form  

 XML is a project of W3C; hence, it is an open 

and non-proprietary specification  

 XML is a subset of SGML 

 XML is a “metalanguage” -- a language for 

describing other languages -- which lets you 

design your own customised markup 

languages for different types of documents 



W3C 

 The World Wide Web Consortium 

 first recommendation was HTML (1992) 

 best known versions of HTML: 3.2, 4.1 

 XML 1.0 released February 1998 

 Many XML related standards: 
 DOM Level 1 V1.0 (October 1998)  

 XML Namespaces V1.0 (January 1999)  

 XPath V1.0 (November 1999)  

 XSLT V1.0 (November 1999)  

 XHTML V1.0 (January 2000)  

 XML Schema V1.0 (May 2001)  

 XLink V1.0 (June 2001)  

 XPointer V1.0 (September 2001)  

 XSL V1.0 (October 2001)  

 XML Information Set V1.0 (October 2001)  

 XPath 2.0 WD (April 2002)  

http://www.w3.org/
http://www.w3.org/XML/


What is a Markup Language?  

 markup (equivalently, encoding)  

 making explicit an interpretation of text  

 markup language  

 a set of markup conventions used together for 
encoding texts.  

 A markup language must specify:  

 how markup is to be distinguished from text,  

 what the markup means,  

 what markup is allowed,  

 what markup is required. 



Structure of XML documents 

<poem> 

  <title>The SICK ROSE</title> 

  <stanza>  

    <line>O Rose thou art sick.</line>  

    <line>The invisible worm,</line> 

    <line>That flies in the night</line> 

    <line>In the howling storm:</line> 

  </stanza>  

  <stanza>  

    <line>Has found out thy bed</line>  

    <line>Of crimson joy:</line>  

    <line>And his dark secret love</line>  

    <line>Does thy life destroy.</line>  

  </stanza> 

</poem>  

 document =  

text + mark-up 

 element =  

start tag + content +  

end tag 

 generic identifier = 

name of the tag 

 element contains text 

or elements or both 

(or nothing) 

 



XML data model 

<poem><title>The SICK ROSE</title> <stanza><line>O Rose thou art sick.</line> <line>The invisible 

worm,</line> <line>That flies in the night</line> <line>In the howling storm:</line></stanza> 

<stanza><line>Has found out thy bed</line> <line>Of crimson joy:</line> <line>And his dark secret 

love</line> <line>Does thy life destroy.</line></stanza></poem>  
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Empty elements 

 elements with content:  
<tag> … </tag> 

 empty elements have no content: 
<tag/> 

 used for indicating “points” in the 
document, for example page breaks 

 formally 
<tag/> = <tag></tag> 



Attributes 

Attributes are used to describe properties of elements 

Example:  

 

 <table id="P1" status='revised'> ... </table> 

 

 given as attribute-value pairs inside the start-tag 

 value must be inside matching quotation marks, single or 
double;  

 order in which attribute-value pairs are supplied inside a tag 
has no significance;  



Comments 

 Comments can appear anywhere in text (but not in markup)  

 Comments start with <!-- and end with --> 

 e.g. 
  <poem> 
    <title>The SLICK <!-- is this an typo? --> ROSE</title> 
    <stanza> 
      <line>O Rose thou art sick.</line>  
      <!-- some lines missing -->  
    </stanza>  
    <!-- here comes the second stanza -->  
   </poem> 

 Note that in XML 'meta-markup' starts with <! or <?  



Example: annotated corpus 



Example: dictionary 



Entities 

 XML documents can also contain entity references, which are, 
when processing the document, substituted by their 
interpretation (the entity) 

 an entity reference starts with the character ampersand and 
ends with the semicolon: &…;  

 character references: a number (character code) is substituted 
by its Unicode character, e.g. &#x0402; → Ђ 

 a few „proper“ entities are predefined in XML:  
&lt;        →  <      &gt; → >  
&amp;   →  &  
&apos;  →   '       &quot; → "  

 < and & are “magic” characters and must always be escaped 
when using them in the text: 
 1 < 2 must be written as 1 &lt; 2 

 Procter & Gamble must be written as Procter &amp; Gamble 

 entities can also be used for other purposes   



XML declaration 

Every XML document must begin with an XML 
declaration which does two things: 

 specifies that this is an XML document,  

 version of the XML standard used: 
 XML 1.0: 1998, (<ascii>) 

 XML 1.1: 2006  (<čačka>) 

 character encoding of the document: 

 <?xml version="1.0" encoding="iso-8859-1" ?> 

 <?xml version="1.0" ?> 
default, and recommended, encoding is UTF-8 

 



Minimal requirements 

 the document starts with the XML declaration 

 tags and entities are correctly written 
Wrong: <a x=y>1 &lt 2</a>  

 the document must be a tree: 

 every start tag has a matching end-tag  
(<name> ≠ <Name> ≠ <NAME> ) 

 elements are correctly nested 
Wrong: <a>…<b>…</a>…</b> 

 the document has a single top-level element 

 This  is then a  well-formed XML document 



Splot the mistake 

<greeting>Hello world!</greeting> 

<greeting>Hello world!</Greeting> 

 

<greeting><grunt>Ho</grunt> world!</greeting> 

<grunt>Ho <greeting>world!</greeting></grunt> 

<greeting><grunt>Ho world!</greeting></grunt> 

 

<grunt type=loud>Ho</grunt> 

<grunt type="loud"></grunt> 

 

<grunt type= "loud"> 

<grunt type ="loud"/> 

 



Another bad XML document 

<HTML>  

<HEAD><TITLE>Links</TITLE></HEAD>  

<BODY>  

<H1 align=center>Interesting<BR>WWW links</H1>  

<UL>  

<LI><A HREF="http://www.w3.org/XML">W3C XML</A>  

<LI><A HREF="http://xml.coverpages.org/">Cover's pages</A> 

</UL>  

<FORM action="http://www.google.com/search" method=get>  

<A href="http://www.google.com/">Google</A>  

<input type=text name=q size=28 maxlength=256>  

<input type=hidden name=meta value="lr=&hl=en">  

</FORM>  

</BODY>  

</HTML>  



Exercise: mark-up a recipe 

 Have a look at http://nl.ijs.si/et/teach/esslli11/mikuni.htm 

 Copy to your computer the „equivalent“ XML document 

http://nl.ijs.si/et/teach/esslli11/mikuni.xml 

 Now open your local XML file with some simple text editor (e.g. 

Wordpad) 

 Also open it in your Web browser 

 Now start marking up XML elements; use your best judgement on 

how to name and nest elements 

 Don„t worry too much about the tag names, the point of the excercise is not to get 

some „perfect“ element set, but just to give you a feeling for XML syntax and 

markup 

 Every once in a while check if it is still well-formed by reloading it in 

your browser 

http://nl.ijs.si/et/teach/esslli11/mikuni.htm
http://nl.ijs.si/et/teach/esslli11/mikuni.xml


Some possible insights 

 When encoding a textual source in XML you will 

almost invariably loose information 

 you have to be realistic: what is important for you? 

 The XML element names express meaning, not 

visual apperance 

 There is more than one way to skin a cat –  

the envisioned use of the resources (and the 

time/budget!)  influences what to encode and how 

 



Defining the rules 

 
 A valid XML document conforms to rules which are 

stated in an (external) schema (“element grammar”) 
of some sort. 

 A schema specifies: 

 names for all elements used 

 names and datatypes and (occasionally) default 
values for their attributes 

 rules about how elements can nest 

 and a few other things, depending on the 
schema language 

 n.b. A schema does not specify anything about 
what elements mean – this is the job of the 
documentation! 

 



In XML a schema is optional 

 XML allows you to make up your own tags, and 
doesn‟t require a schema... 

 The XML concept is dangerously powerful: 

 XML elements are light in semantics 

 one man‟s <p> is another‟s <para> (or is it?) 

 the appearance of interchangeability may be 
worse than its absence 

 But XML is too good to ignore 

 mainstream software development 

 proliferation of tools 

 the language of the web 

 



What can a schema do for 

you? 

 ensure that your documents use only 
predefined elements, attributes, and entities 

 enforce structural rules such as „every 
chapter must begin with a heading‟ or 
„recipes must include an ingredient list‟ 

 make sure that the same thing is always 
called by the same name 

 schema languages vary in the amount of 
validation they support 

 



Schema languages 

 Schemas can be written in: 

 XML DTD Language 

(inherited from SGML) 

 The W3C schema language 

(main successor of DTDs) 

 The ISO Relax NG schema language 

(used by TEI) 



A simple DTD 
 

XML document: 

<city> 

 <name>Graz</name> 

 <inhabitants>285,470</inhabitants> 

 <country>Austria</country> 

</city> 

DTD: 

<!ELEMENT city (name, inhabitants, country)> 

<!ELEMENT name  (#PCDATA)>  

<!ELEMENT inhabitants  (#PCDATA)> 

<!ELEMENT country  (#PCDATA)> 



A more complex DTD 

<!ELEMENT anthology (poem+)>  

<!ELEMENT poem (title?, stanza+)>  

<!ELEMENT title (#PCDATA) >  

<!ELEMENT stanza (line+) >  

<!ELEMENT line (#PCDATA) > 

<anthology> 

  <poem> 

    <title>The SICK ROSE</title> 

    <stanza>  

      <line>O Rose thou art sick.</line>  

      <line>The invisible worm,</line> 

      <line>That flies in the night</line> 

      <line>In the howling storm:</line> 

    </stanza>  

    <stanza>  

      <line>Has found out thy bed</line>  

      <line>Of crimson joy:</line>  

      <line>And his dark secret love</line>  

      <line>Does thy life destroy.</line>  

    </stanza> 

  </poem>  

</anthology> 

An element definition gives: 

 the name of the element  

 its content model 



Content Model Operators  

 ( open bracket for grouping  

 ) close bracket  

 , follows  

 | or  

 ? maybe  

 * repeated 0 or more times  

 + repeated once or more times  

 

<!ELEMENT poem  

   (title?,  

     (line+  

     |  

     (refrain?, (stanza, refrain?)+) 

    ) 

       )  

> 



Mixed content 

<title>The <hi>SICK</hi> ROSE</title> 

 

If an element contains #PCDATA and element content, #PCDATA 
must always appear as the first option in an alternation; the group 
containing it must use the star operator; it may appear once only, 
and in the outermost model group.  

 

<!ELEMENT ltem1 (#PCDATA | para)*>     <!-- OK -->  

<!ELEMENT item2 (#PCDATA | para | note)*> <!-- OK -->  

 

<!ELEMENT item3 (#PCDATA , para)*> <!-- WRONG! -->  

<!ELEMENT item4 (para | #PCDATA)*> <!-- WRONG! -->  

<!ELEMENT item5 (#PCDATA | para)+> <!-- WRONG! -->  

<!ELEMENT item6 (para | (#PCDATA | note)*)> <!-- WRONG! -->  

 

 



Empty Content  

Empty elements do not have content. To 

distinguish them from those with content in 

well-formed XML documents, they have a 

special form: the tag ends with a slash. 

 In the DTD:  

<!ELEMENT pageBreak EMPTY> 

 In the document:  

... <p> The page ends here. <pageBreak/> 

Here starts a new one. </p> ...  



Attributes 

 In the DTD: 
attribute name;  type  default 

<!ATTLIST table  

 type CDATA  #IMPLIED     allowed 

 id   ID   #REQUIRED     necessary 

 status  (draft| 

    revised | 

    final )   "draft"       default value 

> 

 In the XML document: 

<table id="tab.12" type= "summary" status= "revised"> 



A Complete Valid XML  

Document  
<?xml version="1.0" encoding="us-ascii"?>  

<!DOCTYPE anthology [  

 <!ELEMENT anthology (poem+)>  

 <!ELEMENT poem (title?, stanza+)>  

 <!ELEMENT title (#PCDATA) >  

 <!ELEMENT stanza (line+) >  

 <!ELEMENT line (#PCDATA) >  

]>  

<anthology>  

  <poem> 

    <title>The SICK ROSE</title>  

    <stanza>  

      <line>O Rose thou art sick.</line>  

      <line>The invisible worm,</line>  

      <line>That flies in the night</line>  

      <line>In the howling storm:</line>  

    </stanza>  

    <stanza>  

      <line>Has found out thy bed</line>  

      <line>Of crimson joy:</line>  

      <line>And his dark secret love</line>  

      <line>Does thy life destroy.</line>   

    </stanza>  

  </poem>  

</anthology>  



Exercise: make a DTD for your 

XML recipe 

 Put the DTD directly into your XML file; open 

it with a browser to see if it validates 

 
<?xml version="1.0" encoding="iso-8859-1"?>  

<!DOCTYPE recipe [  

 <!ELEMENT recipe (…)>  

       … 

]>  

<recipe> 

… 

</recipe> 

 



Standard schemas 

 There are by now many standard data formats, 

which are expressed in XML schemas + associated 

documentation 

 Docbook: software manuals 

 SVG: Scalable vector graphics 

 MathML: Mathematical Markup Language 

 MusicXML:  Music Notation 



DocBook example 



MathML 



MusicXML 



XML Namespaces 

 A XML document could usefully contain elements and attributes that 

are defined for and used by multiple software modules. 

 Such documents pose problems of recognition and collision.  

 Therefore document constructs should have universal names, whose 

scope extends beyond their containing document;  

 Such universal names are defined by the XML Namespaces 

specification 

 Namespaces make use of the notion of a Uniform Resource 

Identifier, (URI), which identifies a resource by meta-information of 

any kind; in contrast, an URL locates a resource on the net, which 

means if you have a URL and the appropriate protocol you can 

retrieve the resource.  

 

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/Addressing/
http://www.w3.org/Addressing/


xmlns 

• Two-part naming system for element types and attributes 

• The xmlns prefixed attributes give the URI and the local prefix 

of the namespaces 

• „Qualified names“ consist of prefix, colon and local part of the 

name 

• Note: The URI is not a URL - it does not need to refer to a DTD or to 

be accessible 



xmlns 

• The default namespace is introduced by the attribute xmlns, 

without a local prefix 

• The prefix xml is by definition bound to the namespace name 

http://www.w3.org/XML/1998/namespace 

• xml:id and xml:lang are predefined attributes in XML 

http://www.w3.org/XML/1998/namespace


Non-hierarchical structures 

 XML has a tree-based information model 

 But not all structures are trees 

 The standard case is when we want to 

model several hierarchies (trees) over the 

same text, e.g. 

 document structure + 

 linguistic structure + 

 physical structure 



Crossing hierarchies 

<l>Scorn not the sonnet; critic, you have frowned,</l> 

<l>Mindless of its just honours; with this key</l> 

<l>Shakespeare unlocked his heart; the melody</l> 

<l>Of this small lute gave ease to Petrarch's wound.</l> 

 <seg>Scorn not the sonnet;</seg> 

 <seg>critic, you have frowned, Mindless of its just honours;</seg> 

 <seg>with this key Shakespeare unlocked his heart;</seg> 

 <seg>the melody Of this small lute gave ease to Petrarch's wound.</seg> 

The two markups cannot be simply combined 

within one document 



Stand-off markup 

 Many ways have been suggested how to 

overcome this limitation 

 All have associated problems: 

 more complex processing 

 more difficult validation 

 For HLT the most popular mechanism is 

stand-off markup: 

 the annotations are not part of the document, 

but only point to it 



Stand-off example 

<l> 

  <w xml:id="w001">Scorn</w> 

  <w xml:id="w002">not</w> 

  <w xml:id="w003">the</w> 

  <w xml:id="w004">sonnet</w>;  

  <w xml:id="w005">critic</w>,  

  <w xml:id="w006">you</w> 

  <w xml:id="w007">have</w> 

  <w xml:id="w008">frowned</w>,  

</l> 

… 

<!-- elsewhere in the current document --> 

<seg><xi:include xpointer="range(element(w001),element(w004))"/></seg> 

<seg><xi:include xpointer="range(element(w005),element(w013))"/></seg> 
 



XML related recommendations 

• XML is a good development, storage 

and interchange format – but what can 

you do with it? 

• Transform: into HTML, PDF, DB, … 

• Search: find information in XML docs 

• How do you do this? 

• Using XML related recommendations 

• XPath, XSLT, XQuery 



XPath 

• The primary purpose of XPath is to address 

parts of an XML document; 

• XPath uses a compact, non-XML syntax 

similar to the path notation in URLs 

• XPath models an XML document as a tree 

of nodes 

• Expression evaluation occurs with respect to 

its context node 

 



XPath examples 

 para selects all „para“element children of the context node 

 *  selects all element children of the context node 

 @name selects the attribute „name“ of the context node 

 @*  selects all the attributes of the context node 

 para[1] selects the first „para“ child of the context node 

 .  selects the context node 

 .//para selects all „para“ grandchildren of the context node 

 /doc/chapter[2]/section[1] 

selects the 1st section of the 2th chapter of the doc child of the 

root node  



XPath cont. 

• You can also select the parent, ancestor, 

sibling, etc. nodes, e.g. 

ancestor::section 

following-sibling::para[1] 

• Other constrains: 

para[@id], para[hi], para[ancestor::section] 

• XPath functions: 

substring-after(para,„Author: „) 

fn:replace(para,„x*„,„y„)  //XPath 2.0// 



XSLT 

• A language in which to write transformations 

(stylesheets) for XML document 

• XSLT stylesheets are written in XML 

• Several free XSLT processors exist (e.g. 

xsltproc, saxon) 

• Output is XML, HTML or text 

• Again, takes the XML document as a tree 

• Uses XPath to select nodes to process 



XSLT example 
<?xml version="1.0"?> 

<xsl:stylesheet version="1.0" xmlns:xsl= 

     "http://www.w3.org/1999/XSL/Transform"> 

<xsl:template match="/"> 

  <html> 

    <body> 

      <h2>My CD Collection</h2> 

        <table border="1"> 

          <xsl:for-each select="catalog/cd"> 

             <tr> 

                <td><xsl:value-of select="title"/></td> 

                <td><xsl:value-of select="artist"/></td> 

             </tr> 

          </xsl:for-each> 

        </table> 

      </body> 

     </html> 

   </xsl:template> 

</xsl:stylesheet> 

<?xml version="1.0"?> 

<catalog> 

  <cd> 

    <title>Empire Burlesque</title> 

    <artist>Bob Dylan</artist> 

    <country>USA</country> 

    <company>Columbia</company> 

    <price>10.90</price> 

    <year>1985</year> 

  </cd> 

. 

. 

</catalog> 



XQuery 

 For searching in XML documents  

 Somewhat similar to SQL 

 Uses XPath 

 Used by native XML databases, e.g. 

eXist 



Starting with XML 

 all browsers show XML 

 editing can be done in plain text editor, but an XML editor is 

better (Oxygen) 

 validation to schema can be done in XML editors, by browsers 

(to an extent) or by stand-alone programs 

 for XSLT processing, use Saxon (or via an XML editor) 

 many many tutorials on the Web! 


