
Standards for

language encoding

Tomaž Erjavec
Dept. of Knowledge Technologies

Jožef Stefan Institute

ESSLLI 2011

A few words about me

• Tomaž Erjavec
Department of Knowledge Technologies
Jožef Stefan Institute
Ljubljana

• http://nl.ijs.si/et/, tomaz.erjavec@ijs.si

• Areas of work: compilation and annotation of
corpora and other language resources, encoding
standards, digital libraries (text-critical editions)

• Web page for this course:
http://nl.ijs.si/et/teach/esslli11/
and, of course, Moodle

http://nl.ijs.si/et/
mailto:tomaz.erjavec@ijs.si
http://nl.ijs.si/et/teach/esslli11/

Overview of the course

1. Introduction, character sets

2. Structuring data: XML

3. Encoding for the humantities: TEI

4. Standards for LRs: ISO

5. Semantic Web: W3C standards

I. Introduction

What are standards?

 dictionary:

1. an obligatory uniform regulation for

measurement, quantity or quality

2. that which specifies how something can or must

be

 consensually accepted regulations, which are public

and contain explicit definitions

 the main purpose is to harmonise industrial practice

in various fields in order to enable interchange

History of standardisation

 XVIII century: in France each region (village) has its own units
of measurement; also, different objects (say a field or forest)
are measured differently

 how to define a uniform system of measurements: search for a
single unit from which it would be possible to derive all other
measures

 meter: one ten-millionth of the length of the meridian through
Paris, from the North Pole to the equator

 the importance of standardisation grows with the industrial
revolution: mechanical and electrical engineering, construction
work…

 today, standards encompass even such “soft” fields as the
organisation of business (ISO 9000)

 big business: companies that check compliance with
standards

Standards and best practices

 National standard bodies: DIN, ANSI, SIST

 International standard bodies:

 IEC: International Electrotechnical Commission

 ISO: International organisation for standardisation

 IETF: Internet Engineering Task Force

 W3C:World Wide Web Consortium

 Unicode consortium

 Initiatives:

 MUFI: Medieval Unicode Font Initiative

 TEI: the Text Encoding Initiative

 Best practices:

 Penn Treebank PoS tags

 TIGER annotation scheme

Language resources

 Corpora

 monolingual and multilingual

 general and domain specific

 raw text or annotated

 text or speech

 Lexica

 monolingual and multilingual

 words and lemmas

 entities (names)

 phrases (terms)

Annotations

 Morphological level: lemmas/stems, coarse (PoS)

or fine (MSD) grained tags

 Syntax: syntactic trees or dependencies

 Semantics: word senses, semantic roles

 Named entities: names, dates, numeric expressions

 Terms, time & space expressions and relations

 Anaphora: anaphoric links

 Parallel corpora: sentence and word/phrase

alignments

 Meta-data: information about the resource

Utility of LRs

A basis for:

 HLT development

 Training: datasets for inducing language models

 Testing: datasets for evaluating performance

 Empirically driven (applied) linguistics:

 Corpus linguistics

 Lexicography, Terminography

 Language teaching

Why standards for encoding of

digital data?

Traditionally, each developer made LRs to work with their
particular software and for their particular needs

Problems:

 longevity: advances in technology make programs soon
obsolete and data bound to these programs becomes
unreadable

 interchange: difficult to use data on other platforms or
pass it between programs

 exploitation: difficult to re-use the data for other purposes

 intelligibility: no public and stable specifications of the
format

 validation: we don‟t know whether certain data is written
according to the specification or not

Standardisation of LRs

 LRs are expensive to produce – so, a good idea if

they are reusable and long-lasting

 LRs are becoming larger and with more complex

annotations – no good for everyone to reinvent the

wheel

 Familiarity with standards in this area helps to

produce good resources and to be able to use the

resources already produced:

 freely available resources: Google, (MetaShare)

 LDC, ELRA

 corpora@uib.no

Levels of standardisation

 Characters: the basic building blocks

 XML: structuring the data and assigning

annotations

 TEI: a large vocabulary of XML elements:

“encoding text for scholarly purposes”

 ISO standards: some basic things like dates and

languages; and recent attempts to standardise

many different types of LRs

 Semantic Web: Meta-data and ontologies

II. Character sets

 Characters are the “atoms” of textual resources

 It still often happens that characters are garbled in

processing, resulting in useless text

 Currently, Unicode is gaining ground but is still not

the only character set in use

 Unicode is relatively complex

Character encoding

 Digital computers store data as (binary)

numbers

 There is no a priori connection between

these numbers and characters (of an

alphabet)

 If there are no conventions for this mapping

or if there are too many → chaos

 Standards and quasi standards:

ASCII, ISO 8859, (Windows, Mac), Unicode

Basic concepts I.

character
 abstract concept (An „A“ is something like a

Platonic entity: it is the idea of an „A“ and not the

„A“ itself)

 a character does not by itself have a mapping to a

number or a specific graphical representation

 usually it is descriptivelly defined, e.g. „Greek letter

lower-case alpha “, and the graphical representation

is given only as a suggestion, „α“

Basic concepts II.

 character set
 a set of characters

 each character has an associated character code

 character code
 1-1 relation between the character from a character

set and a number, e.g. A = 26, B = 27, ...

 Note:
character codes are often written in hexadecimal:
0 → 0, 1 → 1, 2 → 2, ... 9 → 9,
10 → A, 11 → B, ..., 15 → F,
16 → 10, 17 → 11, ...,
254 → FE, 255 → FF, 266 → 100

Example:

the ASCII character set

e.g.

in the ASCII

character set

the character

lower case Latin a

has the character

code 97

Basic concepts III.

 glyph
 a graphical representation of a character

 one character can have more than one glyph
e.g. the character “upper-case Latin A” ↔ glyphs A, A, A

 sometimes one glyph can be associated with more than
one character, e.g. the glyph P ↔ characters “upper-case
Latin P”, “upper-case cyrillic R”, “upper-case Greek Rho”

 font
 a set of glyphs (for some character set):

 A, B, C, Č, D, …
 sometimes a font does not cover the complete character

set!

Some character sets

 ASCII - oldest, contains only the letters

of the English alphabet + punctuation,

numbers

 Family of characters sets ISO 8879

 The Windows family of character sets

(„code pages“)

 Unicode

ASCII

 American Standard Code for Information
Interchange (1950')

 7-bit encoding: character codes 0-127

 0-31 – control characters + formatting
characters:
 Esc, Line Feed, tab, space,...

 32-126 – punctuation and special characters,
numbers, upper- and lower-case letters:

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ;
< = > ? @ A B C D E F G H I J K L M N O P
Q R S T U V W X Y Z [\] ^ _ ` a b c d e f g h
i j k l m n o p q r s t u v w x y z { | } ~

The ISO 8859 family

 need for extra characters for national (European)
alphabets:
 80‘s

 8 bits, so twice as many chars as in ASCII

 first half = ASCII, second half = new characters

 International Standards Organisation publishes
character sets for particular groups of European
languages: ISO 8859 (-1 .. -12)

 ISO 8859-1 (ISO Latin 1) – Western European
languages:

 ¡ ¢ £ ¤ ¥ ſ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » µ ´
¶ ¿ À Á Â Ã Ä Å Æ Æ È Ç Ê Ë Ð Í Î Ï ƀ È Ó Ñ Ò Õ
É × Ø Ö Ô Õ Ê Ƃ Ƅ ß Ì Ë Í Ï Î Ð æ Ñ Ó Ò Ô Õ × Ö Ø Ù
Ɓ Ú Ü Û Ý ß Þ ÷ ø á à â ã ƃ ƅ ÿ

ISO 8859-2

C&E European languages

Confusion

 Microsoft also developed their own code pages:

 Windows CP1252 v.s. ISO-8859-1

 Windows CP1250 v.s. ISO-8859-2

 Also other „standards“: IBM, Apple, …

 Problems with Web pages

8-bit character sets

(ISO 8859, Windows)

 advantages to ASCII:
 we can directly write the characters for national alphabets

(slovenščina)

 disadvantages:
 we cannot write multilingual texts in the same character set

 confusion due to competing character sets

 no coverage for East Asian languages or more complex
characters: punctuation, math operators, diacritics,
historical characters, Klingon…

 the file gives no indication which character set it uses:

© Global publishing ~ Ž Global publishing

The final solution

 Need a character set that would be

universal, i.e. would contain all the

world's characters

 Must be well documented and open

 Has to be consensually developed and

maintained

 Still needs some room for “private”

characters

Unicode

1991 – Unicode Consortium: http://www.unicode.org/

Unicode Standard / ISO 10646 „Universal Character Set“

 The most recent major revision is Unicode 6.0. (2011):

109,000 characters, 93 scripts

 code charts for visual reference + reference data files

 encoding methodology, character properties, rules for

normalization & decomposition, collation, rendering,

bidirectional display: complex!

 As yet unrealised ambition:

completely replace other character sets

http://www.unicode.org/

Visual reference:

Character code charts

Unicode definitions for IPA

Reference data

 Unicode Character Database

 e.g. http://www.unicode.org/Public/UNIDATA/NamesList.txt

 CSV files, XML, PDFs

 Various software uses this information:

Java classes, Perl modules, e.g.

 m/[[:upper:][:punct:]]/;

matches any upper case letter or punctuation symbol

 charnames::viacode(4532)

returns: LATIN CAPITAL LETTER U WITH DOUBLE

GRAVE

http://www.unicode.org/reports/tr44/
http://www.unicode.org/Public/UNIDATA/NamesList.txt

Unicode and diacritics

 many letters are available with diacritics as
individual characters: ËÍÏÎÐǎǟǻȧ

 but diacritics also exist as combining characters
(combining diacritical marks)

 eg.: a + ̂ + ̤ = â̤

 although problems with display
of complex combinations, e.g.
a + ̂ + ˚ = å̂

 solved by specialised
fonts

Private Use Area

 Not all characters are (or could be) included in Unicode

 Unicode allows for addition of new characters, but only after

an extended process

 For extra characters, a Private Use Area (PUA) is designated

 Fonts are free to use PUA, but with the understanding that

these characters are not portable

 Example use: Freising Manuscripts

http://nl.ijs.si/e-zrc/bs/

Unicode planes & BMP

Basic multilingual plane

0000 - FFFF

(65,535 characters)

E000–F8FF - PUA

Encoding Unicode

 ISO 8859, Windows charaters sets:
8bit, therefore limited to 256 characters

 Trivial mapping: one char = one byte

 But Unicode codepoints can be huge

 Necessary to use several bytes to encode one
character

 All Unicode codepoints (numbers) fit into 4 bytes

 But it is – in general – very wasteful to use 4 bytes
for one char

 Is there any better way to do it?
Yes, several..

Unicode Transformation Format

UTF defines how to map codepoints to bytes (bits),
which are then stored or transmitted

 UTF-32
 1 character = always 4 bytes

 UTF-16
 1 character = 2 bytes in basic multilingual plane

 UTF-8
 if char in ASCII, then in 1 byte (compatibility!)

 otherwise 1-6 bytes for 1 char

 cunning system, where not all byte sequences are
valid (so, won„t mix with 8 bit encodings)

Back to ASCII

ASCII is sometimes still the safest:

 problems with input and display of chars

 data transfer (e-mail)

Recoding to ASCII:

 e-mail: - MIME standard

 HTML and XML – character entities:

š = Š = š

Defining the character set of a

document

 HTML:
<HTML>
 <HEAD>
 <TITLE>Recept za ribano kašo</TITLE>
 <META http-equiv="Content-Type"
 content="text/html; charset=ISO-8859-2">
 </HEAD>
 <BODY>
 …

 XML:
<?xml version="1.0" encoding="utf-8"?>
<recept>
 <naslov>Recept za ribano kašo</naslov>
 …

 Some valid character sets:
 utf-8, iso-8859-X, us-ascii

i18n, l10n

 Internationalisation and localisation:

enabling programs to work with different languages

(and cultures)

 E.g. language of program messages and help;

keyboard layout; date and number format

 CLDR - Unicode Common Locale Data Repository

 For language resources:

 collating sequence: a,b,c,č,d, not a,b,c,d,…č

 Unix: system variables regulate which locale is

selected, e.g. LC_COLLATE = sl_SI.UTF-8

http://cldr.unicode.org/

Case study: Cleaning Gigafida

 1,000,000,000 word tokens

 Unicode + XML + TEI

 Character profile: 1200

 Forbidden chars: 500

 Excel

 Character normalisation

gFclean-chars.xlsx

Fixing chars in Gigafida

 Hyphens:

$s=~s/[\x{0336}\x{0096}\x{2010}]/-/g;

 Spaces:

$s=~s/[\x{00A0}\x{2002}\x{2008}\x{2009}\x{202F}]/ /g;

 Digraphs:

$s=~s/ffi/ffi/g; $s=~s/ffl/ffl/g; $s=~s/ff/ff/g; $s=~s/fl/fl/g;

 Non-spacing diacritics:

$s=~s/Ú/Ú/g; $s=~s/č/č/g; $s=~s/š/š/g;

 Entities:

$s=~s/&/&/g; $s=~s/ / /g; $s=~s/©/©/g;

 This is the phonetic spelling of the Slovene
word „čmrlj“ (bumbelbee)

1. Write the characters in Word

2. Find which Unicode characters these are
http://www.unicode.org/charts/

An excercise

http://www.unicode.org/charts/

