Overview

1. the problem
2. in-line methods
 1. fragmented markup
 2. milestones
3. stand-off methods
 1. multiple annotation
 2. using pointers
4. GENIA
The OHCO concept

- Text as Ordered Hierarchy of Content Objects (OHCO)
- ..each structure properly nests within the higher level one
- XML is a tree-modelling language - well suited for OHCO representations
- however, not all structures are tree-like..

Main problem: crossing hierarchies
Problems in Humanities research ~ text modelling

- layout vs. paragraph structure:
 \[
 \text{<page> ... <p> ... </page> ... </p>}
 \]
- paragraph vs. reported speech:
 \[
 \text{<p> ... <q> ... </p> ... </q>}
 \]
- metrical vs. syntactic structure:
 \[
 \text{<l><s>....</l>....</s>}
 \]

- etc.

- research in the humanities - mostly done in the domain of so called text-critical editions and transcriptions of primary sources
Many proposals!

From: C. M. Sperberg-McQueen. Rabbit/duck grammars: a validation method for overlapping structures. Extreme Markup Languages 2006. Montréal, Québec:

...ways of dealing with non-hierarchical information; see, for example, [Barnard et al. 1988], [Renear et al. 1993], [Barnard et al. 1995], [Huitfeldt 1995], [Murata 1995], [Durand et al. 1996], Out-of-line or standoff markup [Dybkjaer et al. 1998], fragmentation of elements, milestone elements, virtual elements (e.g. [Barnard et al. 1988], [ACH/ACL/ALLC 1994], [Barnard et al. 1995]), concurrent structures [ISO 1986] [Sperberg-McQueen / Huitfeldt 1999], MECS [Huitfeldt 1999], parallel encoding (e.g. [Witt 2004], [Hilbert et al. 2005], [Dekhtyar / Iacob 2005]), bottom-up virtual hierarchies [Durusau / O'Donnell 2002a], layered markup and annotation (LMNL) [Tennison / Piez 2002], range algebra [Nicol 2002], just-in-time trees [Durusau / O'Donnell 2002b], multi-colored trees [Jagadish et al. 2004], tables [Durusau / O'Donnell 2004], TexMecs [Huitfeldt / Sperberg-McQueen 2001], Goddag structures [Sperberg-McQueen / Huitfeldt 2000], Trojan horses [DeRose 2004]

Problems in NLP
~ corpus annotation

- probably the most work in this area has been done for annotation of speech corpora, dialogues and discourse structure
- crossing hierarchies:
 - phonological / morphemic; discourse / syntactic
- discontinuous constituents:
 - syntax, multi-word expressions, disfluencies
 - note that in NLP a similar problem occurs with parsing
- also: annotation of same level by different tools
Example: dialogue vs. syntactic annotation

Solutions

- In-line markup:
 - modified markup is included in the text file
 - main advantage: text / markup can still be (partially) hand edited and validated
 - favoured by the humanities community
 - main standard used:
 - TEI
- Stand-off markup:
 - markup is stored separately, and points to text
 - main advantage: any relationship can be expressed
 - favoured by the NLP community
 - main standard (beginning to be) used:
 - ISO TC37 SC4 proposals

Types of overlap

<table>
<thead>
<tr>
<th>Elements share one end/start point</th>
<th>Elements share start point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class: overlap</td>
<td>Elements share start point</td>
</tr>
<tr>
<td>Elements share start and point</td>
<td></td>
</tr>
<tr>
<td>Two elements contained within the other</td>
<td></td>
</tr>
<tr>
<td>Two elements share same start point</td>
<td></td>
</tr>
<tr>
<td>Two elements share both start and end points</td>
<td></td>
</tr>
<tr>
<td>No overlap</td>
<td></td>
</tr>
</tbody>
</table>

In-line solutions

- **standard approaches:**
 - fragmented markup
 - milestones
- **alternatives:** BUVH, etc.
- **non-XML approaches:**
 - TexMECS
 - JITT
 - LMNL
Fragmented markup

- One hierarchy taken as primary, for the other(s) the markup is modified so that each “crossing” element is split
- Non-well formed structure:
 `<p><s>According to the visiting leader, the economy of the country is <q>"better than ever."</s><s>It is in fact in very good shape.</q></p>`
- With fragmented `<q>`:
 `<p><s>According to the visiting leader, the economy of the country is <q id="q1" next="q2">"better than ever."</q></s><q id="q2" prev="q1">It is in fact in very good shape.</q></p>`

Fragmented markup II

- Advantages:
 - retains as much as possible of the structure
 - XML schema need not be changed
 - not very difficult to implement
- Disadvantages:
 - one hierarchy arbitrarily chosen as the primary one
 - needs special (XSLT, XQuery) constructs to implement
 - elements have be broken up into many pieces if:
 - secondary hierarchy crosses multiple branches of primary one
 - we have to deal with multiple hierarchies
Milestones

- Container elements are substituted by empty elements
- Example:
 - Non-well formed structure:
 `<p><s>According to the visiting leader, the economy of the country is "better than ever."</s><s>It is in fact in very good shape."</s></p>`
 - With milestone `<q>`:
 `<p><s>According to the visiting leader, the economy of the country is "better than ever."</s><s>It is in fact in very good shape."</s></p>`
- Choices: only broken or all elements can be milestone
- Best type of milestones, so called Troyan milestones used by OSIS:
 - use `<q who='paris'>...</q>` when you can, otherwise
 - use `<q who='paris' sID='foo'...<q eID='foo'/>`
Non-XML approaches

- These approaches introduce new syntax and semantics
- best known probably MECS / TexMECS:
 Huitfeldt, Claus, and C. M. Sperberg-McQueen. 2001.
 “TexMECS: An experimental markup meta-language for
 complex documents”.
 http://helmer.aksis.uib.no/claus/mlcd/papers/texmecs.html
- example:
 \{sp\{speaker[AASE]speaker\}\{\{Peer, you're lying!\}l\}\}sp
 \{sp\{speaker[PEER GYNT]speaker\}\{\{No, I'm not!\}l\}\}sp
 \{sp\{speaker[AASE]speaker\}\{\{Well then, swear to me it's true.\}l\}\}sp
 \{sp\{speaker[PEER GYNT]speaker\}\{\{Swear? why should I?\}l\}\}sp
 \{sp\{speaker[AASE]speaker\}\{\{Every word of
 it's a lie.\}l\}\}\}sp

XML in-line solutions - conclusions

- it is still possible to modify text and (partially) markup
- partial XML validation still possible, although schema
 might need to be changed
- smaller or greater problems with using standard
 methods of extracting information (XPath, XQuery)
- become less advantageous as number of different
 levels grow
- we might not want to deal with all the markup all
 the time
Stand-off solutions

- Markup is separated from text
- Markup points to text using XLink
- (dis)advantages: any type of relationships possible

Methods discussed:
- Hybrid approaches:
 - joins
 - multiple annotations
- Pure stand-off:
 - Pointers (& tools)
 - RDF

Joins

- "semi stand-off markup"
- Introduced by TEI
- Advantage: power - any relationship can be expressed
- Disadvantage: join object is not (in general) contiguous with the segments it is joining
Join-like syntactic annotation

Used in the TIGER treebank of German

Multiple Annotation

- Developed by Andreas Witt, Bielefeld University, c.f. http://www.text-technology.de/, Sekimo project
- each annotation layer is a separate XML document, which contains both markup and text
- the text serves as the implicit link
- text has two representations:
 - as XML documents
 - as a Prolog database
- they can be programmatically derived and used together for editing, inference, or unification of the multiply annotated document
- advantages:
 - each level can be viewed separately
 - simple to add new levels
Multiple Annotations II

Prolog representation for elements:

\[
\begin{align*}
\text{node} & (\text{d-xhtml.xml},729,786,[1,5,3,2], \text{element('td')}). \\
\text{node} & (\text{d-xhtml.xml},729,786,[1,5,3,2,1], \text{element('ul')}). \\
\text{node} & (\text{d-thema.xml},729,751,[1,5,3,2,1,1], \text{element('li')}). \\
\text{node} & (\text{d-thema.xml},729,786,[1,5,3,2], \text{element('cause')}). \\
\text{node} & (\text{d-thema.xml},729,751,[1,5,3,2,1], \text{element('cause')}).
\end{align*}
\]

Similar structure for attributes:

\[
\text{attr} (\text{tape-xhtml.xml},729,786,[1,5,3,2], 'valign', 'top').
\]

For PCDATA:

\[
\begin{align*}
\text{pcdata_node} & (729,730, 'N'). \\
\text{pcdata_node} & (730,731, 'o'). \\
\text{pcdata_node} & (731,732, 'c'). \\
\text{pcdata_node} & (732,733, 'a'). \\
\text{pcdata_node} & (733,734, 't'). \\
\text{pcdata_node} & (734,735, 't').
\end{align*}
\]

(adapted from Andreas Witt. Multiple hierarchies: new aspects of an old solution. Extreme Markup Languages 2004, Montréal, Québec)

Multiple Annotations III

Software support:

- xml2prolog.py
 XML documents to Prolog
- nexus.pl
 Prolog to NITE format
- semt.pl
 Prolog to XML (milestone/fragmentation of incompatible elements)
- markup can be modified with standard programs
- text can be edited with 2 specialised editors
- programs are freely available
- performance might be an issue
“Proper” pointers

```
<link xlink:type='extended'>
  <anchor xlink:type='locator' xlink:role='quote' href='#11'>
  <anchor xlink:type='locator' xlink:role='quote' href='#12'>
  <anchor xlink:type='locator' xlink:role='quote' href='#13'>
  </link>
```

- used by most NLP approaches, also for “proper” hierarchies
- no (or only basic) markup present in text
- markup separated into one or several distinct files
- XPointer/XLink attributes to point to IDs or simply text offsets

Pointers II

- advantages: power - any relationship can be expressed
- disadvantages:
 - very difficult to perform validation
 - (difficult to query the data)
 - difficult to change the annotations
 - impossible to change the text
- this approach best for “read only” systems: annotations and esp. text are fixed, the only interest is in accessing the data
- still, lots of annotation tools exist that know how to deal with stand-off annotations
Tool: MonetDB/XQuery
Alink et al. Representing and Querying Multi-dimensional Markup for Question Answering. NLPXML-2006, Trento, Italy

- supports overlapping markup
- source text, or character data, is stored as a Binary Large OBject (BLOB)
- all annotations stored in a single XML document, pointing to BLOB with offsets
- querying performed with extended XQuery
- system, reported to be very fast and scalable, is implemented in a special (open source) DB MonetDB/XQuery

MonetDB/XQuery II

Main innovation: 4 new XPath axes
- e.g. XML document:
  ```xml
  <A start="10" end="50">
    <B start="30" end="50"/>
  </A>
  <E start="20" end="60">
    <C start="20" end="40"/>
    <D start="55" end="60"/>
  </E>
  ```
 //B/select-wide::*
 returns all nodes that overlap with the span of a B node:
 in our case A, B, C and E.
- //*[./select-narrow::B]
 returns nodes that contain the span of B:
in our case, A and E.

<table>
<thead>
<tr>
<th>Context</th>
<th>Axis</th>
<th>Result nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>select-narrow</td>
<td>B C E</td>
</tr>
<tr>
<td>A</td>
<td>select-wide</td>
<td>B C E</td>
</tr>
<tr>
<td>A</td>
<td>reject-narrow</td>
<td>E D</td>
</tr>
<tr>
<td>A</td>
<td>reject-wide</td>
<td>D</td>
</tr>
</tbody>
</table>

Table 1: Example annotations.
Tool: NITE

http://www.ltg.ed.ac.uk/NITE

- NITE XML Toolkit (NXT) is open source Java software for working with multimodal, spoken, or text language corpora
- designed to support the tasks of human annotators and analysts of heavily cross-annotated data sets
- allows combination of multiple audio and video signals with crossing structures of linguistic annotation
- has been already used on a range of projects with varying needs

NITE and crossing hierarchies

- NITE uses its internal data representation based on multi-rooted trees: nodes can have one set of children, but multiple parents from different upward trees
- data is serialized into XML by dividing the multi-rooted tree into convenient trees where the XML structure mirrors the data structure and representing the remaining connections between nodes using stand-off links with XLink
- NXT Search: stand-alone program to query NITE-type annotated corpora
 - uses special syntax for querying
Other tools

Quite a few other (well-known) tools use stand-off markup:
- Callisto,
- MMAX,
- AGTK (Annotation Graph Toolkit)
- Wordfreak
- etc.

Radical Stand-off: RDF

- The Resource Description Framework is a language intended for representing metadata about Web resources.
- RDF identifies things using URIs
- RDF describes resources in terms of simple properties and property values
- RDF statements can be represented as a graph of nodes and arcs representing the resources, their properties and values
- RDF provides an XML-based syntax (called RDF/XML) for recording and exchanging these graphs
- RDF is the main language of the Semantic Web, e.g. it is the basis of OWL, the Ontology Web Language
Simple RDF example

- Example of a statement about a Web page: http://www.example.org/index.html has a creator whose value is John Smith
- RDF terms for the 3 parts of this statement are:
 - subject: http://www.example.org/index.html
 - predicate: creator
 - object: John Smith
- All 3 are URI references, e.g.
 - subject URI, e.g. http://www.example.org/index.html
 - predicate URI, e.g. http://purl.org/dc/elements/1.1/creator
 - object URI, e.g. http://www.example.org/staffid/85740
- RDF graph:

```
http://www.example.org/index.html
  |  
  v  
http://purl.org/dc/elements/1.1/creator
  |  
  v  
http://www.example.org/staffid/85740
```

Using RDF for linguistic annotation

Aguado de Cea et al.
RDF(S)/XML linguistic annotation of semantic web pages.
2nd workshop on NLP and XML, 2002.

- example gives morphosyntactic annotations with three taggers
- they also describe syntactic and semantic annotation
- however, no tools for querying such structures are presented
Annotea

- W3C project for annotating Web pages
- uses Annotea server, where people can deposit notes / comments on regions of Web pages
- uses RDF
- Web pages + annotations can be viewed with an Annotea aware Web browser
- Basic idea similar to corpus annotation
- But annotations much less dense, and more dispersed

Why is RDF not more popular?

- Still a big divide between the Semantic Web and the NLP communities?
- Data structures are very large, larger than is necessary even with stand-off annotation
- No tools yet exist that would support RDF corpus annotations
Stand-off solutions - conclusions

- can represent any relationship between structures
- difficult to use standard XML methods (XPath, XQuery) to extract information
- difficult to validate structures
- difficult to manually modify markup
- impossible to modify text

→ useful only with specialised tools to operationalise such markup

Overlapping Markup Desiderata

Steven DeRose. Markup Overlap: A Review and a Horse in Extreme Markup Languages 2004 (Montreal, Quebec)

- Adequacy
- Human readability
- Maintainability
- Available implementations
- XML compatibility
- Ease of validation
- Validation across hierarchies
- Ease of formatting
- Ease of extracting multiple views
- Ease of extracting hierarchical subsets
- Continuity of text content
GENIA

- several copies of the corpus, each annotated with different linguistic information
- at certain points the text itself differs
- how to merge the separate copies into one corpus?
- how to query over all / subsets of the annotations?
- how to ensure easy addition of further annotations?

Conclusions

- Many different approaches, with different strengths and weaknesses
- In-line approaches can - to an extent - rely on existing XML technologies
- Stand-off approaches need special tools
 - however, quite a few exist
- For GENIA, maybe:
 - Hand editing of text: Milestones
 - Maintaining separate copies: Multiple annotations
 - Fast and flexible querying: Monet/XQuery