
LT TTT – A Flexible Tokenisation Tool

Claire Grover, Colin Matheson, Andrei Mikheevy,
Marc Moens

Language Technology Group
University of Edinburgh, 2 Buccleuch Place

Edinburgh EH8 9LW, Scotland
fgrover, colin, mikheev, marcg@cogsci.ed.ac.uk

Abstract
We describe LT TTT, a recently developed software system which provides tools to perform text tokenisation and mark-up. The system
includes ready-made components to segment text into paragraphs, sentences, words and other kinds of token but, crucially, it also allows
users to tailor rule-sets to produce mark-up appropriate for particular applications. We present three case studies of our use of LT TTT:
named-entity recognition (MUC-7), citation recognition and mark-up and the preparation of a corpus in the medical domain. We conclude
with a discussion of the use of browsers to visualise marked-up text.

1. Introduction
The LTG’s Text Tokenisation Toolkit (LT TTT, Grover

et al., 1999) was developed within an XML processing
paradigm whereby tools are combined together in a pipeline
allowing each to add, modify or remove some piece of
mark-up. The tools are compatible with the LT XML
toolset (Thompson et al., 1997) and use the LT XML API to
manipulate attribute values and character data in XML ele-
ments and to address particular elements in XML streams.
Different combinations of the same tools can thus be used
in pipelines for achieving different text processing tasks.

LT TTT provides components over and above programs
available with LT XML. Some of these are rule-based while
others utilise the statistical technique of maximum entropy
modelling. Although a text is required to be in XML format
for processing, pipelines can be built where the input text is
in some other initial format. Indeed, LT TTT can be used
simply to convert non-XML mark-up to XML. Conversely,
after tokenisation, LT TTT, LT XML or XSL tools can be
used to convert XML mark-up to other formats; we discuss
formats for visualisation of mark-up in Section 6.

LT TTT is available for free to individuals, researchers
and development teams, provided its usage is restricted to
non-commercial purposes. It can be accessed athttp:
//www.ltg.ed.ac.uk/software/ttt/ .

2. System Overview
The core LT TTT program isfsgmatch , a general

purpose transducer which processes an input stream and
rewrites it using a set of rules provided in a grammar file.
The rule files forfsgmatch operate at one of two levels:
at the ‘character-level’ they operate over character data in-
side an XML element and can rewrite it in arbitrary ways; at
the ‘xml-level’ they operate over XML elements and typi-
cally group such elements into larger XML elements. A
pipeline normally involves some initial processing at the
character-level to perform, for example, segmentation of
the character data contents of paragraphs into word to-
kens. As an example, in a corpus of newspaper articles, we

yNow also at Xanalys Inc.

might mark up the string “April 20: the government col-
lapsed this afternoon.” as the following sequence of tokens
(W=word).1

<W>April</W><W>20</W><W>:</W>
<W>the</W><W>government</W>
<W>collapsed</W><W>this</W>
<W>afternoon</W><W>.</W>

Using the pipeline architecture, we typically build up
mark-up using several calls tofsgmatch interspersed
with calls to other tools. A typical pipeline will include
a call to our maximum entropy sentence boundary disam-
biguator,ltstop , after the word tokens have been marked
up. This component decides whether a full stop is an end-
of-sentence marker or part of an abbreviation. Once the full
stops are disambiguated, an xml-level call tofsgmatch
can be used to mark up sentences as XML elements. An-
other typical part of a pipeline is a call toltpos , a part-
of-speech tagger, since part-of-speech information is often
critical in identifying larger chunks. The output at this stage
might be:

<SENT>
<W P=’NNP’>April</W>
<W P=’CD’>20</W><W P=’:’>:</W>
<W P=’DT’>the</W>
<W P=’NN’>government</W>
<W P=’VBD’>collapsed</W>
<W P=’DT’>this</W>
<W P=’NN’>afternoon</W><W P=’.’>.</W>
</SENT>

At a later stage, xml-level processing might be needed
to group word tokens of particular types into larger units.
For example, dates and times may be marked up:

1In most of our examples, we use LT TTT just to add mark-up
and not to change the input in any other way. This means that
existing whitespace and newline characters are unaffected. How-
ever, we are unable to preserve the actual format of the examples
within narrow columns and so we introduce extra linebreaks here
which do not exist in reality.



<SENT>
<TIMEX TYPE=’DATE’>
<W P=’NNP’>April</W><W P=’CD’>20</W>
</TIMEX><W P=’:’>:</W>
<W P=’DT’>the</W>
<W P=’NN’>government</W>
<W P=’VBD’>collapsed</W>
<TIMEX TYPE=’TIME’ >
<W P=’DT’>this</W><W P=’NN’>afternoon</W>
</TIMEX><W P=’.’>.</W>
</SENT>

Recognition of high-level units, such as dates in our ex-
ample, is typically done usingfsgmatch rules which con-
sult a pre-prepared lexicon of expected words. It is, how-
ever, possible to incrementally build a lexicon while pro-
cessing a corpus. We discuss such cases in Sections 3 and 4.

The grammar rule files forfsgmatch are themselves
XML documents with each rule an instance of arule el-
ement. The following are some simplified rules for recog-
nising month-date units such as “April 20” in our example.

<!-- January, February, ... -->
<RULE name = "month-name">
<REL match = "W[P=’NNP’]">

<CONSTR
check_in="LEX" check_tags="MONTH *">
</CONSTR>

</REL></RULE>

<!-- a possible date (up to 31) -->
<RULE name="poss-date">
<REL

match=
"W[P=’CD’]/#˜ˆ([1-9]|[12][0-9]|3[01])$">

</REL></RULE>

<!-- February 4, ... -->
<RULE name="month-date"

targ_sg="TIMEX[TYPE=’DATE’]">
<REL type="REF" match="month-name"></REL>
<REL type="REF" match="poss-date"></REL>
</RULE>

The rulemonth-name matches aW[P=’NNP’] element
if it occurs in a lexicon,LEX, with a category tagMONTH.
The rule poss-date matches aW[P=’CD’] element
whose contents match the regular expression which picks
out the numbers 1–31. (The regular expression language
is the standard Unix/Perl regular expression language.).
The rulemonth-date looks for two consecutive strings
as defined by the rulesmonth-name and poss-date
and when a successful match is found, the XML element
TIMEX[TYPE=’DATE’] is wrapped around the entire
string.

The rules forfsgmatch are deterministic, with the
first matching rule being the one that succeeds. The poten-
tial disadvantages of such a system are overcome by allow-
ing the user to place constraints on the left and right context
of a string to be matched to ensure that a rule only applies
when intended. For example, the month names “April” and
“May” are also possible first names of a person. When
marking up dates one therefore has to be careful that the
surrounding context of an instance of “April” or “May” is

truly indicative of a date. One can be sure that “12th April
2000” is a date because of the preceding ordinal and the
following year identifier, but in examples where the month
name occurs on its own, more care is needed. A preceding
preposition such as “in” or “before” is a good indicator of
a month, whereas a following proper name is not. In some
cases the string will be truly ambiguous and annotation in-
dicating the presence of ambiguity might be called for. In
Section 3 we describe our named entity recognition system
which implements a stepwise approach to resolving such
cases of ambiguity.

While pipelines tend to incrementally add mark-up to
a document, it may be desirable to shed some interim pro-
cessing results in the final output. In this case a call to the
programsgdelmarkup can be included in the pipeline.
In our example, once the dates have been identified, it may
be desirable to remove all other mark-up:

<TIMEX TYPE=’DATE’>April 20 </TIMEX>: the
government collapsed<TIMEX TYPE=’TIME’ >this
afternoon</TIMEX>.

Similarly, the LT XML program,sggrep , can be used to
extract the date and time elements:

<TIMEX TYPE=’DATE’>April 20</TIMEX>
<TIMEX TYPE=’TIME’ >this afternoon</TIMEX>

In this section we have used a simplified example in or-
der to give a brief overview of the types of processing that
the LT TTT tools can be used for. In the next three sections
we demonstrate the flexibility and reusability of our tools
by focusing on three different tokenisation tasks that we
have recently undertaken. The first example is our use of
LT TTT to participate in the MUC-7 Named Entity Recog-
nition Competition. Here the task was to recognise and
mark up sequences of words which denote names of per-
sons, organisations and places, temporal expressions and
monetary amounts and percentages. The second example
is the identification of citation and reference list elements
in academic texts. Here we first mark up the reference list
at the end of the paper, providing a list of author names
to be used when searching the body of the text for cita-
tions. The third example is the conversion into XML of the
OHSUMED corpus of Medline abstracts, its segmentation
into sentences, part-of-speech tagging and general prepara-
tion for further linguistic processing. Finally, in Section 6
we discuss the use of LTG tools for visualising mark-up.

3. Named Entity Recognition
Named entity recognition involves processing a text

and identifying certain occurrences of words or expres-
sions as belonging to particular categories of named enti-
ties. Named entity recognition software serves as an im-
portant preprocessing tool for tasks such as information ex-
traction, information retrieval and other text processing ap-
plications.

The LT TTT tools formed the core of the LTG’s sys-
tem (Mikheev et al., 1998) that was entered in the Named
Entity task of the 7th Message Understanding Competi-
tion (MUC-7). This is a competition on information ex-
traction from text, sponsored by the U.S. Defense Ad-
vanced Research Projects Agency (Chinchor, 1998). The



named entities our system recognises and the type of an-
notation it uses for the mark-up are therefore the ones stip-
ulated by the MUC-7 competition rules. There are three
kinds of named entity to be recognised: temporal expres-
sions, numeric expressions and names of people, places
and organisations. This must be marked using the SGML
tags TIMEX, NUMEX and ENAMEX. TIMEX elements
are either TYPE=’DATE’ or TYPE=’TIME’, NUMEX ele-
ments are either TYPE=’MONEY’ or TYPE=’PERCENT’
and ENAMEX elements are one of TYPE=’PERSON’,
TYPE=’LOCATION’ or TYPE=’ORGANIZATION’. The
following are some examples:

� <TIMEX TYPE=’DATE’>all of 1987</TIMEX>

� <TIMEX TYPE=’TIME’ >8:24 a.m. Chicago
time</TIMEX>

� <NUMEX TYPE=’MONEY’>several million New
Pesos</NUMEX>

� more than
<NUMEX TYPE=’PERCENT’>95%</NUMEX>

� in <ENAMEX TYPE=’LOCATION’>North and South
America</ENAMEX>

� the<ENAMEX TYPE=’ORGANIZATION’>U.S. Fish
and Wildlife Service</ENAMEX>

� the<ENAMEX TYPE=’PERSON’>
Clinton</ENAMEX> government

� <ENAMEX TYPE=’ORGANISATION’>
Microsoft</ENAMEX> chairman
<ENAMEX TYPE=’PERSON’>Bill
Gates</ENAMEX> said yesterday

The system that we built for the MUC-7 named en-
tity task achieved a combined precision and recall score of
93.39. It is comprised of multiple processing layers linked
together within the XML pipeline architecture with sym-
bolic and statistical components interleaved. The first step
converts the texts into XML from their original SGML for-
mat and performs initial segmentation into word tokens as
sketched in the previous section. We found that the iden-
tification of NUMEX and TIMEX elements was relatively
simple and could be performed at this stage with calls to
fsgmatch using hand-crafted grammars for first NUMEX
and then TIMEX elements.

The identification of ENAMEX elements is much
harder and requires several passes through the text inter-
leaving various kinds of processing. The initial step of the
ENAMEX subtask is part-of-speech tagging with the max-
imum entropy taggerltpos (Mikheev, 1997), discussed
briefly in Section 2. Thereafter we proceed cautiously and
make wide use of contextual information. A string of words
like “Adam Kluver” has an internal structure which sug-
gests that this is a person name; but we know that it can
also be used as a shortcut for the name of an organization
(“Adam Kluver Ltd.”) or a location (“Adam Kluver Coun-
try Park”). Looking it up on a list will not necessarily help:
the string may not be on a list, it may be on more than one
list, or it may be on the wrong list. However, somewhere
in the text, there is likely to be some contextual material
which makes it clear what type of named entity it is. Our

strategy is to only make a decision once we have identified
this bit of contextual information.

We further assume that, once we have identified con-
textual material which makes it clear that “Adam Kluver”
is (e.g.) the name of a company, then any other mention of
“Adam Kluver” in that document is likely to refer to that
company. If the author at some point in the same text also
wants to refer to (e.g.) apersoncalled “Adam Kluver”, s/he
will provide some extra context to make this clear, and this
context will be picked up in the first step. The fact that
at first it is only an assumption rather than a certainty that
“Adam Kluver” is a company is represented explicitly, and
later processing components try to resolve the uncertainty.

In our system, we implemented this approach as a
staged combination of rule-based processing with proba-
bilistic partial matching. Note that the rule-based process-
ing is implemented usingfsgmatch with hand-tailored
grammars but that the partial matching software is not part
of the LT TTT release. Nevertheless, the example is in-
structive since it demonstrates the utility of our incremen-
tal approach to adding mark-up whereby different tools can
be brought in where necessary. Full details of our MUC-7
system can be found in (Mikheev et al., 1998, 1999a and
1999b) but we give a brief overview of the stages here.

Step 1. Sure-fire Rules

In the first step, the system makes a call tofsgmatch
using a set of sure-fire grammar rules. These rules only fire
when a possible candidate expression is surrounded by a
certain context and they rely on known corporate designa-
tors (Ltd., Inc., etc.), person titles (Mr., Dr., Sen.), and other
definite contexts. As already noted, part-of speech-tagging
occurs prior to this stage as does a restricted stage of seman-
tic tagging. Information from gazetteers is available at this
stage but it is treated aslikely rather than definite and is only
utilised if the context is sufficiently suggestive. For exam-
ple, names of possible locations found in our gazetteer of
place names are marked asLOCATIONonly if they appear
with a context that is suggestive of location. “Washington”,
for example, can just as easily be a surname or the name
of an organization. Only in a suggestive context, like “in
Washington”, will it be marked up as a location.

Step 2. Partial Match 1

After the sure-fire rules have applied the system per-
forms a probabilistic partial match of the entities identified
so far. It collects all named entities already identified in the
document and generates all possible partial orders of their
composing words preserving their order, and marks them if
found elsewhere in the text. For instance, if “Adam Kluver
Ltd” had already been recognised as an organisation by the
sure-fire rules, in this second step any occurrences of “Klu-
ver Ltd”, “Adam Ltd” and “Adam Kluver” are also tagged
aspossibleorganizations. This assignment, however, is not
definite since some of these words (such as “Adam”) could
refer to a different entity. This information goes to a pre-
trained maximum entropy model (see Mikheev, 1998 for
more details on this approach). The model takes into ac-
count contextual information for named entities, such as
their position in the sentence, whether they exist in lower-



case in general, whether they were used in lowercase else-
where in the same document, etc. These features are passed
to the model as attributes of the partially matched words. If
the model provides a positive answer for a partial match,
the system makes a definite assignment.

Step 3. Rule Relaxation

Once this has been done, the system again appliesfs-
gmatch with grammar rules but with more relaxed contex-
tual constraints and with a new lexicon of names in the text
identified in the previous stages of processing (i.e. a lexicon
built ‘on the fly’ and local to the document(s) being pro-
cessed). At this stage the system will mark word sequences
which look like person names taking into account the new
lexicon of names. For example, in expressions like “Mur-
doch’s News Corp”, the string “Murdoch’s” could be part
of the name of the organisation, or could be a possessive.
Further inspection of the text reveals that Rupert Murdoch
is referred to in contexts which support a person interpreta-
tion; and “News Corp” occurs on its own, without the gen-
itive. On the basis of evidence like this, the system decides
that the name of the organisation is “News Corp”, and that
“Murdoch” should be tagged separately as a person. Fi-
nally, during this stage known organizations and locations
from the gazetteers available to the system are marked in
the text, without checking the context in which they occur.

Step 4. Partial Match 2

At this point, the system has exhausted its resources
(grammar rules for named entities, as well as its gazetteers).
The system then performs another partial match to annotate
names like “White” when “James White” had already been
recognised as a person, and to annotate company names
like “Hughes” when “Hughes Communications Ltd.” had
already been identified as an organisation. As before, this
process of partial matching is again followed by a prob-
abilistic assignment supported by the maximum entropy
model. One of the texts in the competition contained the
string “U7ited States and Russia”. Because of the typo in
“U7ited States”, it wasn’t found in a gazetteer. But there
was internal evidence that it could be a location (the fact
that it contained the word “States”); and there was external
evidence that it could be a location (the fact that it occurred
in a conjunction with “Russia”, a known location). These
two facts in combination meant that the system correctly
identified “U7ited States” as a location.

4. Mark-up of Bibliographic Material
In this section we describe how we use LT TTT and

other LTG XML tools to identify and mark up bibliographi-
cal information in academic texts. We assume that there are
two main types of bibliographic information in documents:
the reference list (or ‘bibliography’) which usually appears
at the end of the text, and the in-text citations which nor-
mally point to items in the reference list. Typically, then, a
reference list looks something like this:2

2The examples used here are drawn largely from a real refer-
ence list which was provided for the BibEdit project (Matheson
and Dale, 1993) by Harcourt Brace Jovanovich.

Abelson, D., (1990). Preferential, cooperative
binding of topoisomerase II to scaffold associated
regions. EMBO J. 8 3997-4006.

Cabelli, H.F., 1990. Promoter occlusion:
transcription through a promoter may inhibit its
activity. Cell 29 939-944.

van Dijk, D., (1990). Regulation of the higher-order
structure of chromatin by histones H1 and H5. J. Cell
Biol. 90 279-288.

The other form of bibliographic material, in-text citations,
come in two main forms - ‘syntactic’ and ‘parenthetic’. A
syntactic citation is part of the sentence which contains it:

This is argued by Abelson (1990) and others, and
Jones (1987) further claims that .....

while parenthetic citations are in the form of parenthetic
comments:

This has often been claimed (Abelson [1990]; Jones
[1987]), and the data suggest that ....

The distinction is useful in that publishers typically in-
sist on different forms for the two types. Generally, the
order and presentation of bibliographic information varies
fairly widely, of course, depending on publishers’ individ-
ual conventions. Nevertheless there are many common fac-
tors which make it viable to use grammars to describe the
material, and we have produced two fairly extensive exam-
ple grammars for processing bibliographies and another for
identifying and structuring the citations. The grammars are
not intended to provide comprehensive coverage, but we
claim that the general approach is viable for large-coverage
systems. Note that in this context we do not use probabil-
ities at any stage, although there are obvious places where
a more extensive system could usefully employ the same
statistical methods outlined above.

We began by writing a new DTD for bibliographic in-
formation which contains general information on the struc-
ture of citations and reference list items. The first stage in
the process then converts plain text to XML, after which
a small character-level grammar performs basic ‘chunking’
into very simple tokens. To take an example at this point,
the journal information in the first example reference list
item above (EMBO J. 8 3997-4006.) is tokenised as:

<W C=’W’>EMBO</W><W C=’W’>J</W>
<W C=’FS’>.</W><W C=’CD’>8</W>
<W C=’CD’>3997</W><W C=’DASH’>-</W>
<W C=’CD’>4006</W><W C=’FS’>.</W>

Here we are not using a part-of-speech tagger, and the
word elements have a class attribute (‘C’) which identifies
the tokens as numbers, as themselves (dash, full stop, and
so on), and as ‘everything else’ (‘W’). No attempt is made
to capture abbreviations and word-internal punctuation is
not handled – so a hyphenated word such as “Johnson-
Laird” will be three tokens. These are not necessary de-
cisions and it is up to the grammar writer to decide what
the appropriate split between character-level and xml-level
processes should be. However, we certainly want to retain
the integrity of the parts of a range specification such as



“3997-4006” above, and in this context it is arguably sim-
pler to leave the interpretation of hyphens to higher-level
processing.

As for the reference list information, we assume that
this is typed and structured more or less as suggested in
the BibEdit project (see Matheson and Dale, 1992 for the
relevant types), and so the first item in our example bibli-
ography above will have the following general structure:

<REF>
<AUTHOR>Abelson, D.,</AUTHOR>
<DATE>1990</DATE>.
<TITLE>
Preferential, cooperative binding of topoisomerase II
to scaffold associated regions.
</TITLE>
<JOURNAL>EMBO J. 8 3997-4006</JOURNAL>

</REF>.

One problem in automatically detecting this structure is
in determining where the title ends – as titles can contain
abbreviations, there is no obvious way of identifying the
correct span in something like:

van Stump, D., 1990. Regulation of the higher-order
structure of chromatin by histones H1 and H5. J. Cell
Biol. 90 279-288.

Given that “Cell Biol” is a possible journal name, it is diffi-
cult to stop the “J” being included in the title. In the absence
of a complete list of journal titles, we assume that the best
solution to this problem is to stage the process of structur-
ing the reference lists, attempting to identify the publica-
tion information first using one grammar and then applying
a second to find everything else. In this way, assuming that
we always include the largest amount of material possible
in the mark-up, we will pick out “J. Cell Biol” as the jour-
nal name before we look for the title. Below is an example
of a marked-up journal:

<JOURNAL>
<JNAME>J. Cell. Biol</JNAME>
<VOLUME>5</VOLUME>
<RANGE>
<START>2689</START>
<SEPARATOR>-</SEPARATOR>
<END>2696</END>
</RANGE>

</JOURNAL>

The reference list grammars thus produce a fairly de-
tailed analysis of the input, and one interesting aspect of
this is that the information on author names can be used in
processing the text to find citations. An example of a single
author name from a reference list is shown below:

<NAME>
<PRENAME>Van</PRENAME>
<SURNAME>Outen</SURNAME>
<INVERTED>D.</INVERTED>

</NAME>

The ‘inverted’ part of a name represents the field which
is typically inverted over the others in some circumstances
(“Jones, Peter”, “Heath, Sir Edward”, and so on). The sur-

name field is clearly very useful in looking for in-text cita-
tions, and hence with a marked-up reference list in place it
is possible to use this information to identify citations with
a high degree of certainty. One method of doing this is to
create an ‘on the fly’ lexicon from the names in the refer-
ence list. We extract the SURNAME elements of the refer-
ence list and convert them to thefsgmatch lexicon for-
mat using the programxmlperl (McKelvie, 1999). This
is a rule based transformation language which allows the
rules that manipulate XML elements and element contents
to contain Perl code. This is thexmlperl rule for sur-
names:

<rule query=".*/SURNAME/#">
s%’% ’ %;
s%-% - %;
if ($_=˜/\-|\’/)

{print "$_ :: SURNAME\n"}
else {print "$_ SURNAME\n"}

</rule>

A call to xmlperl with a rule file containing just
this rule will create an output where everything apart from
SURNAME elements is ignored. The query part of the rule
uses the LT XML query language to pick out just the char-
acter data contents of SURNAME elements and the Perl
part of the rule specifies a transformation of the character
data: it puts spaces around word-internal quote marks and
hyphens and then it appends the look-up tag SURNAME
to the entry. The main part of the rule looks to see if the
name does in fact contain internal punctuation, and if so,
it prints an appropriate ‘phrasal’ lexical entry (one with a
double colon separator). If not, a simple lexical entry is
output. When run over a marked-up reference list, this will
create a lexicon of the form:

Abelson SURNAME
Baader SURNAME
Cabelli SURNAME
O ’ Brien :: SURNAME
Stainton - Ellis :: SURNAME

The grammar for in-text citations can now use this lexicon
when searching texts, and this both increases the accuracy
of the search and allows a wider range of citations to be
identified. To illustrate this, note that syntactic citations
can be of the form “Jones 1990” as well as “Jones (1990)”
– in other words, brackets round the date are not required
in some styles. However, if we simply assume that proper
names are just capitalised items, then we will overgenerate
with data such as:

In 1990, it rained a lot.
There was no sun in August 1998.
Apparently 1940 was a good summer.

If we are looking for capitalised words plus dates, we will
identify “In 1990”, “August 1998”, and “Apparently 1940”
as citations. With a lexicon of surnames, however, the
search can be broader (allowing unbracketed dates), and
more accurate in that we will also avoid suggesting three
authors in syntactic citations like:



Apparently, Chomsky and Halle (1968) argue that ..

Note that the full TTT documentation (Grover et al.,
1999) contains a detailed tutorial on the process of ex-
tracting and subsequently using lexicons, along with an ex-
tended description of the bibliographic grammars.

5. Medical Corpus Preparation
We have recently started a project called ‘Data Inten-

sive Semantics and Pragmatics’ (DISP) which will apply
a hybrid combination of statistical and symbolic process-
ing at the lexical semantic level. The project is primarily
a computational linguistics one where the aim is to investi-
gate the semantic relations between nouns in complex nom-
inals. The medical domain has been chosen because the
field of medical informatics provides a relative abundance
of pre-existing knowledge bases and ontologies. While
the focus of the project is on semantic issues, a prereq-
uisite is a large, reliably annotated corpus and a level of
syntactic processing that can support the computation of
predicate-argument relations. Since we need to compute
semantic information, current approaches to ‘shallow pars-
ing’ or ‘chunking’ are of little use to us (though they may be
useful as a stage in overall processing) and we have there-
fore chosen to use the grammar development environment
and wide-coverage syntactic and semantic grammar pro-
vided by the Alvey Natural Language Tools (ANLT) sys-
tem (Carroll et al., 1991, Grover et al., 1993). Our cho-
sen corpus is the OHSUMED Corpus (Hersh et al., 1994)
which is a collection of MEDLINE abstracts of medical
journal papers from the years 1987 to 1991 (seehttp:
//www.ncbi.nlm.nih.gov/PubMed/ ).

We are in the process of tuning the grammar to the lan-
guage found in the corpus and when this is complete, we
plan to use Briscoe and Carroll’s (1993) extension of the
ANLT software which uses probabilities to rank parse re-
sults so as to return the most probable syntactic analyses.
Since we are using the full ANLT grammar, any parses
found automatically provide an underspecified logical form
computed compositionally from the parse tree. We hope to
be able to parse and compute logical forms for a large pro-
portion of the corpus and to further annotate the corpus with
syntactic and semantic information in order to discover reg-
ularities in complex nominals.

A significant part of our effort so far has centered on
the conversion of the OHSUMED corpus into XML anno-
tated format and we have completed various stages includ-
ing segmentation into word tokens, part-of-speech tagging
and lemmatisation, using the LT TTT tools in combination
with other programs. While the low-level tokenisation is
much like our simplified description in Section 1, what is
interesting in this task is the extent to which processing
prior to parsing can be used to reduce the burden on the
grammar and parser and the LT TTT toolkit has proved it-
self invaluable at this stage.

5.1. Conversion to XML

The OHSUMED corpus consists of several large ASCII
files (one for each year) and contains just over 355,000
records of medical journal abstracts (though not all records

actually contain the text of the abstract). An idiosyncratic
coding scheme marks up the different parts of an abstract
using line initial full stops paired with specific capitalised
letters as identifiers of specific parts, starting with a unique
identifier. Although we are primarily interested in the text
of the abstract (encoded in a.W field), we have developed
a pipeline for converting each entire record to XML where
each field is packaged as a separate XML element. This
conversion is achieved using two calls tofsgmatch with
specialised grammars for this corpus. The following is an
actual example after initial conversion to XML.

<TEXT>
<RECORD>
<ID>464</ID>
<MEDLINE-ID>87052753</MEDLINE-ID>
<SOURCE>
Contact Dermatitis 8703; 15(3):178-82
</SOURCE>
<MESH>
Adult; Aged; Aged, 80 and over; Dermatitis, Atopic/*DI;
Dermatitis, Contact/*DI; Eyelid Diseases/*ET; Female;
Hand Dermatoses/CO; Human; Male; Middle Age; Patch
Tests.
</MESH>
<TITLE>
Eyelid dermatitis: the role of atopy and contact allergy.
</TITLE>
<PTYPE>JOURNAL ARTICLE.</PTYPE>
<ABSTRACT>
Patients with eyelid dermatitis were studied with patch
tests and a clinical point method for the diagnosis of
atopic skin disease. In 38 patients, contact allergy was
found in 11. The dermatitis was an expression of atopic
dermatitis in 15 patients.
</ABSTRACT>
<AUTHOR>Svensson A; Moller H.</AUTHOR>
</RECORD>

Once the texts of the abstracts are encoded as XML AB-
STRACT elements, they can be extracted (usingsggrep )
and prepared as input to the parser. As sketched in Sec-
tion 1, tokenisation into word units is performed and full
stops are disambiguated. Since the parser expects sentences
as input, it is crucial that SENTENCE element mark-up
should be added at this stage.

5.2. Partial Tagging

The ANLT grammar is a unification grammar based
on the GPSG formalism (Gazdar et al., 1985) which is a
precursor of more recent ‘lexicalised’ grammar formalisms
such as HPSG (Pollard and Sag, 1994). As such, lexical
entries carry a significant amount of information including
information about the subcategorisation properties of con-
tent words. Thus the practical parse success of any gram-
mar is significantly dependent on the quality of the lexicon.
The ANLT grammar is distributed with a large lexicon of
varying quality: the function words such as complemen-
tizers, prepositions, determiners and quantifiers are all reli-
ably hand-coded but content words are less reliable. Verbs
are generally coded to a high standard but the noun lexi-



con is full of redundancies and duplications. If we try to
parse OHSUMED sentences using the ANLT lexicon and
no other resources, we will achieve poor results, mainly
because many of the medical domain words are simply
not in the lexicon but also partly because the coding of
words which are in the lexicon is not always adequate. At
later stages of development we hope to have medical do-
main specific lexicons integrated with the system but at this
early stage we are exploring ways of combining ANLT lex-
icon information with the part-of-speech tags assigned by
our tagger,ltpos . The idea is to ignore function word
tags, since they are less reliable and less informative than
the ANLT hand-coded lexical entries, but to retain content
word tags. The system attempts to look up the wordtag
pair by treating the tag as a novel kind of affix which con-
strains the category of the lexical entry it attaches to. Thus
the string “blockNN” will be associated with the noun en-
try for “block” but not with any verb entry. If the word
is not in the lexicon then the system falls back on default
entries for the tag.

The ANLT parser expects plain ASCII input, not XML,
and we are currently working with a system where the
parser accepts either simple words or wordtag pairs. Once
our SENTENCE elements have been tokenised and part-of-
speech tagged, we append the tag to the word separated by
an underscore, we adopt a format of one line per sentence
and we remove all XML mark-up. Additionally, for the
reason explained above, we dispense with all non-content
word tags, i.e. all tags except for nouns (NN), verb (VB),
adjective (JJ) and adverb (RB). We also split up possessive
marked nouns (“patient’s” becomes “patient ’s”) and sepa-
rate the end of sentence full stop. Thus the first sentence
of the example above is converted to the following format
so that it can be input to the parser (line breaks inserted for
presentation):

Patients NNS with eyelid NN
dermatitis NN were studied VBN with
patch NN tests NNS and a clinical JJ
point NN method NN for the diagnosis NN
of atopic JJ skin NN disease NN .

We usexmlperl to perform this conversion, as de-
scribd in the previous section. For example, the rule for
conversion of aW[P=’NNS’] element specifies that an
underscore and the value of the attributeP should be ap-
pended to the character data content of the element and that
the XML tag should be discarded. For an element such as
W[P=’IN’] (a preposition), the XML mark-up is simply
discarded.

5.3. Pre-empting Parser Choices

The process of preparing OHSUMED sentences for
parsing described so far has involved no more than than
standard tokenisation and part-of-speech tagging. How-
ever, it is possible to use LT TTT to perform other tasks
which can substantially affect the behaviour of the parser.
In the ANLT grammar, nouns are classified according
to their subcategorisation properties in much the same
way as verbs are. Thus one of the entries for the noun
“quandary” specifies that it subcategorises for a PP com-

plement headed by the preposition “about” (e.g. “the gov-
ernment’s quandary about reform”). When the wordtag
pair quandary NN is looked up, all of the noun entries
for “quandary” are returned including the one subcategoris-
ing a PP[about]. However, there is a class of nouns which
are inadequately coded in the ANLT lexicon, namely dever-
bal nominalisations such as “management”, “formation”,
“insertion”. These typically occur in the ANLT lexicon as
simple nouns even though they have a similar complemen-
tation pattern to the verbs from which they derive. Many
of these nominalisations occur in the corpus immediately
followed by a PP headed by “of” and it is clear that this
PP is a complement of the noun corresponding to the di-
rect object of the original verb. Thus we have “insertion
of the needle” corresponding to “insert the needle” but no
lexical entry for “insertion” with a PP[of] subcategorisa-
tion. Therefore, an attempt to parse a sentence containing
“insertion NN of the needleNN” will either fail or yield
an incorrect result. Since the problem is wide-scale and
pervasive but also systematic, our solution is to refine the
tag assigned to a noun wherever it is immediately followed
by “of”. We do this after the tagger has applied using a
call to fsgmatch with a simple grammar which looks for
a W[P=’NN’] or W[P=’NNS’] in a context where it is
followed by aWelement whose content is the string “of”.
When such an element is matched, the rule specifies that its
P value is changed toNNOFor NNSOFappropriately. Thus
the real input to the parser is “insertionNNOF of the nee-
dle NN” where the only category that results from look-up
of “insertion NNOF” is one where a subcategorised PP[of]
is required. This effectively forces the parser to attach the
PP[of] as a complement of the noun and prevents it from
considering any other potential parse options.

The previous example constitutes a linguistically mo-
tivated, relatively high-level, intervention prior to parsing
but we also use LT TTT to perform a number of low-level
transformations of the input string which simplify the task
of the parser. For example, at this early stage of gram-
mar development, we wish to ignore parenthetical mate-
rial (though in future we do intend to accommodate it),
and we can therefore use LT TTT to either remove paren-
thesised strings or to mark-up them up in some way so
that the parser need not try to analyse them. Our cur-
rent choice is to remove the contents but keep a marker
of where the parenthetical was located. Thus we convert
the string “patients presenting to the emergency department
(ED) are routinely admitted to intensive care” to this: “pa-
tientsNNS presentingVBG to the emergencyNN depart-
mentNN () PAR are routinelyRB admittedVBN to inten-
sive JJ careNN”, where the wordtag pair “() PAR” has a
lexical entry similar to a comma. Since parentheticals usu-
ally occur at major phrase boundaries, retaining a record of
its location can prevent the parser from considering analy-
ses which do not have a major boundary at that location.

6. Visualisation
One of the benefits of using XML to annotate data is

that it is comparatively simple to use a browser to visualise
the annotations. Thus, although heavily annotated data can
be hard to view in its raw XML form, there are a number of



different ways to convert it so that it can be easily viewed.
For those with up-to-date browsers, XML documents can
be viewed directly and the user can control how different
elements are rendered using style-sheet commands. Thus
the same document may be viewed using different style-
sheets in order to highlight or suppress particular parts of
the mark-up.

For older browsers, XML documents can be converted
to HTML, again with appropriate style-sheet commands. In
our work we have used James Clark’s XT program (Clark,
1999) as well as the LTG’sxmlperl program to convert
XML documents to HTML with XSL or CSS style-sheets.
As a simple example, if we have used LT TTT to recognise
and mark up dates as described in Section 1, then we can
convert the resulting document to HTML where all mark
up is discarded except for paragraphs which become<P>
elements and TIMEX elements which are converted to
<SPAN CLASS=’DATE’> or<SPAN CLASS=’TIME’>.

<HTML><HEAD>
<STYLE>
SPAN.DATE {background:pink}
SPAN.TIME {background:green}
</STYLE></HEAD>
<BODY>
<P>
<SPAN CLASS=’DATE’>April 20</SPAN>: the
government collapsed <SPAN CLASS=’TIME’>
this afternoon</SPAN>.
</P></BODY></HTML>

Notice that the conversion process has explicitly added
CSS commands in the preamble to make the date elements
be highlighted in pink and the time elements in green. Thus
one can view large bodies of data in a browser and have
specific parts rendered in a way which makes them easily
visible.

Acknowledgements
The work reported in this paper was supported in part by

grant GR/L21952 (Text Tokenisation Tool) from the Engi-
neering and Physical Sciences Research Council, UK. The
corpus preparation work described in Section 5 is supported
by grant R00023777 (Data Intensive Semantics and Prag-
matics) from the Economic and Social Research Council,
UK.

7. References
Briscoe, Ted and John Carroll, 1993. Generalised prob-

abilistic LR parsing of natural language (corpora)
with unification grammars.Computational Linguistics,
19(1):25–60.

Carroll, John, Ted Briscoe, and Claire Grover, 1991. A de-
velopment environment for large natural language gram-
mars. Technical Report 233, Computer Laboratory, Uni-
versity of Cambridge.

Chinchor, Nancy A., 1998. Overview of MUC-7/MET-2.
In Seventh Message Understanding Conference (MUC–
7): Proceedings of a Conference held in Fairfax, Vir-
ginia, 29 April–1 May, 1998. http://www.muc.
saic.com/proceedings/muc_7_toc.html .

Clark, James, 1999. XT Version 19991105.http://
www.jclark.com/xml/xt.html .

Gazdar, Gerald, Ewan Klein, Geoff Pullum, and Ivan Sag,
1985.Generalized Phrase Structure Grammar. London:
Basil Blackwell.

Grover, Claire, John Carroll, and Ted Briscoe, 1993. The
Alvey Natural Language Tools grammar (4th release).
Technical Report 284, Computer Laboratory, University
of Cambridge.

Grover, Claire, Andrei Mikheev, and Colin Matheson,
1999. LT TTT version 1.0: text tokenisation software.
http://www.ltg.ed.ac.uk/software/ttt/ .

Hersh, William, Chris Buckley, TJ Leone, and David
Hickam, 1994. OHSUMED: an interactive retrieval eval-
uation and new large test collection for research. In
W. Bruce Croft and C. J. van Rijsbergen (eds.),Pro-
ceedings of the 17th Annual International Conference
on Research and Development in Information Retrieval.
Dublin, Ireland.

Matheson, Colin and Robert Dale, 1992. BibEdit Deliver-
able 3.1: A representation for bibliographic information.

Matheson, Colin and Robert Dale, 1993. BibEdit: A
knowledge-based copy editing tool for bibliographic in-
formation. In E. S. Atwell (ed.),Knowledge at Work in
Universities: Proceedings of the Second Annual Confer-
ence of the Higher Education Funding Councils’ Knowl-
edge Based Systems Initiative. Cambridge.

McKelvie, David, 1999. XMLPERL 1.0.4. XML process-
ing software. http://www.cogsci.ed.ac.uk/
˜dmck/xmlperl .

Mikheev, Andrei, 1997. Automatic rule induction for
unknown word guessing.Computational Linguistics,
23(3):405–423.

Mikheev, Andrei, 1998. Feature lattices for maximum en-
tropy modelling. InProceedings of the 36th Annual
Meeting of the Association for Computational Linguis-
tics and Proceedings of the 17th International Confer-
ence on Computational Linguistics. Montreal, Quebec.

Mikheev, Andrei, Claire Grover, and Marc Moens, 1998.
Description of the LTG system used for MUC-7. In
Seventh Message Understanding Conference (MUC–7):
Proceedings of a Conference held in Fairfax, Virginia, 29
April–1 May, 1998. http://www.muc.saic.com/
proceedings/muc_7_toc.html .

Mikheev, Andrei, Claire Grover, and Marc Moens, 1999a.
XML tools and architecture for named entity recognition.
Markup Languages: Theory and Practice, 1(1).

Mikheev, Andrei, Marc Moens, and Claire Grover, 1999b.
Named entity recognition without gazetteers. InNinth
Conference of the European Chapter of the Association
for Computational Linguistics. Bergen.

Pollard, Carl and Ivan A. Sag, 1994.Head-Driven Phrase
Structure Grammar. Stanford, Ca. and Chicago, Ill.:
CSLI and University of Chicago Press.

Thompson, Henry S., Richard Tobin, David McKelvie,
and Chris Brew, 1997. LT XML. Software API and
toolkit for XML processing.http://www.ltg.ed.
ac.uk/software/ .


