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Abstract. We consider the task of tagging Slovene words with mor-
phosyntactic descriptions (MSDs). MSDs contain not only part-of-speech
information but also attributes such as gender and case. In the case of
Slovene there are 2,083 possible MSDs. P-Progol was used to learn mor-
phosyntactic disambiguation rules from annotated data (consisting of
161,314 examples) produced by the MULTEXT-East project. P-Progol
produced 1,148 rules taking 36 hours. Using simple grammatical back-
ground knowledge, e.g. looking for case disagreement, P-Progol induced
4,094 clauses in eight parallel runs. These rules have proved effective
at detecting and explaining incorrect MSD annotations in an indepen-
dent test set, but have not so far produced a tagger comparable to other
existing taggers in terms of accuracy.

1 Introduction

While tagging has been extensively studied for English and some other Western
European languages, much less work has been done on Slavic languages. The
results for English do not necessarily carry over to these languages. The tagsets
for Slavic languages are typically much larger (over 1000), due to their many
inflectional features; on the other hand, training corpora tend to be smaller.

In work related to this [9] a number of taggers were applied to the problem
of tagging Slovene. Four different taggers were trained and tested on a hand
annotated corpus of Slovene, the translation of the novel 1984’ by G. Orwell.
The taggers tested were the HMM tagger [6, 15], Brill’s Rule based tagger [3], the
Maximum Entropy Tagger [14], and the Memory-based Tagger [7]. Accuracies
on ‘known’ words were mostly a little over 90%, with the Memory-Based Tagger
achieving 93.58%. Known words are those found in a lexicon that accompanies
the corpus. Our goal here was to see whether ILP (specifically P-Progol) could be
used to learn rules for tagging, to analyse the rules and to compare empirically
with these other approaches to tagging.



2 Morphosyntactic Descriptions

The EU-funded MULTEXT-East project [8] developed corpora, lexica and tools
for six Central and East-European languages. The centrepiece of the corpus is
the novel “1984” by George Orwell, in the English original and translations [11].
The novel has been hand-tagged with disambiguated morphosyntactic descrip-
tions (MSDs) and lemmas. The novel is marked up for sentences and tokens;
these can be either punctuation or words. Each punctuation symbol has its own
corpus tag (e.g. XMDASH), while the words are marked by their morphosyn-
tactic descriptions.

The syntax and semantics of the MULTEXT-East MSDs are given in the
morphosyntactic specifications of the project [10]. These specifications have been
developed in the formalism and on the basis of specifications for six Western Eu-
ropean languages of the EU MULTEXT project [1]; the MULTEXT project pro-
duced its specifications in cooperation with EAGLES (Expert Advisory Group
on Language Engineering Standards) [4].

The MULTEXT-East morphosyntactic specifications contain, along with in-
troductory matter, also:

1. the list of defined categories (parts-of-speech)
2. common tables of attribute-values
3. language particular tables

Of the MULTEXT-East categories, Slovene uses Noun (N), Verb (V), Adjec-
tive (A), Pronoun (P), Adverb (R), Adposition (S),! Conjunction (C), Numeral
(M), Interjection (I), Residual (X),2 Abbreviation (Y), and Particle (Q).

The morphosyntactic specifications provide the grammars for the MSDs of
the MULTEXT-East languages. The greatest worth of these specifications is that
they provide an attempt at a morphosyntactic encoding standardised across lan-
guages. In addition to already encompassing seven typologically very different
languages, the structure of the specifications and of the MSDs is readily exten-
sible to new languages.

To give an impression of the information content of the Slovene MSDs and
their distribution, Table 1 gives, for each category, the number of attributes in the
category, the total number of values for all attributes in the category; the number
of different MSDs in the lezicon, and, finally, in the annotated MULTEXT-East
Slovene 1984’ corpus.

To exemplify the annotation use, Fig 1 gives the MSD-annotated first sen-
tence of the Slovene translation of the novel: It was a bright cold day in April, and
the clocks were striking thirteen. The Bil/Vcps-sma annotation shows that “Bil”
is a singular masculine past participle in the active voice, and the jasen/Afpmsnn
annotation shows that “jasen” is an adjective which is indefinite, nominative,
singular, masculine, positive and qualificative.

! Adpositions include prepositions and postpositions; Slovene uses only prepositions.

% Residual is a category encompassing unknown (unanalysable) lexical items. It ap-
pears only once in the Slovene lexicon, for 2+2=5; in our experiment we also used it
to mark punctuation.



Table 1. Slovene morphosyntactic distribution

PoS ||Att Val| Lex Cor
Noun 5 16| 99 74
Verb 8 26/ 128 93
Adjective 7 22| 279 169
Pronoun 11 36{1,335 594
Adverb 2 4 3 3
Adposition 3 8 6 6
Conjunction 2 4 3 2
Numeral 7 23| 226 80
Interjection 0 0 1 1
Residual 0 0 1 1
Abbreviation|| 0 0 1 1
Particle 0 0 1 1
All 45 139(2,083 1,025

Bil/Vcps-sma je/Vcip3s--n jasen/Afpmsnn &comma;/XCOMMA
mrzel/Afpmsnn aprilski/Aopmsn dan/Ncmsn in/Ccs
ure/Ncfpn so/Vcip3p--n bile/Vmps-pfa trinajst/Mcnpnl &period;/XPERIOD

Fig. 1. First MSD-annotated sentence of Slovene translation of Orwell’s “1984”

3 Method

Following the basic approach taken in [5,12], we used ILP to learn MSD elim-
ination rules each of which identify a set of MSDs that cannot be correct for a
word in a particular context. The context for a word is given as the MSDs of
all words to the left and to the right of the word. Not using the actual words in
the context simplified the learning, and is justified on the grounds that MSDs
(unlike, say, Penn Treebank PoS tags) provide very specific information about
the words.

The MULTEXT-East lexicon provides an ambiguity class for the Slovene words
appearing in the corpus. For a given word, this is the set of possible MSDs for
that word. Elimination rules can then be applied to reduce this ambiguity class
in a particular context, ideally reducing it to a single MSDs. Note that each rule
requires a word’s context to be sufficiently disambiguated so that it can fire.
This motivates using elimination rules in tandem with another tagger.

3.1 Examples

Each ambiguous word generated a single negative example and one or more pos-
itive examples. Each negative example is represented as a triple of left context,
correct MSD and right context. The correct MSD generates a negative example
for the induction of elimination rules since it identifies an MSD which it would



be incorrect to eliminate. Positive examples contain MSDs which are incorrect
(positive examples of MSDs to eliminate) but which are in the focus word’s
ambiguity class.

The left context is reversed so that the MSD immediately to the left of
the focus is at the head of the list. Figure 2 show two positive and one neg-
ative example generated from a single occurrence of a word with ambiguity
class {pp3fsg__y_n,vmip3s__n,vcip3s__n}. In this context, vcip3s__n is the
correct MSD and hence appears in a negative example of elimination. MSDs
are represented as constants for efficiency. We used exactly the same training
data that had been used for training the other taggers in [9]. This data, to-
gether with other resources to reproduce our experiments, can be found at:
http://alibaba.ijs.si/et/project/LLL/tag/. We produced 99,261 positive
and 81,805 negative examples giving a total of 181,066 examples.

%rmv (LeftReversed,Focus,Right)

%2 POSITIVE EXAMPLES

rmv ( [vcps_smal, [pp3fsg__y_nl, [afpmsnn, xcomma,afpmsnn,aopmsn,ncmsn,ccs,
ncfpn,vcip3p__n,vmps_pfa,mcnpnl,xperiod]) .

rmv ( [veps_smal , [vmip3s__n], [afpmsnn,xcomma,afpmsnn, aopmsn,ncmsn, ccs,
ncfpn,vecip3p__n,vmps_pfa,mcnpnl,xperiod]) .

%1 NEGATIVE EXAMPLE
rmv ( [veps_smal , [vcip3s__n], [afpmsnn,xcomma,afpmsnn, aopmsn,ncmsn, ccs,
ncfpn,vcip3p__n,vmps_pfa,mcnpnl,xperiod]) .

Fig. 2. Examples created from a single occurrence of an ambiguous word

3.2 Background Knowledge

The use of ILP for tagging is particularly well motivated when the tags (here
MSDs) have considerable structure. The background knowledge was designed
to take advantage of that structure. Figure 3 shows some of the background
predicates used.

Working through Figure 3, we have firstly, msd/2 which explodes MSDs from
constants into lists so that other predicates can extract the relevant structure
from the MSDs; there were 1703 such msd/2 facts in our background knowledge.
Many of the background predicates consume an initial portion of a word’s context
(left or right) and return the remainder of the context as an output in the second
argument. For example, noun (4,B) is true if A begins with a noun and is followed
by B. We have the predicates gender/3, case/3 and number/3, which identify
gender, case and number or fail for MSDs where these are not defined. Figure 3
shows two of the gender/2 clauses which show that the gender identifier is the
3rd attribute for noun MSDs and the 4th for pronoun. The most important



predicates are disoncase/2 disongender/2 and disonnumb/2 which indicate
when two MSDs disagree in case, gender or number.

We also have simple phrasal definitions. Noun phrases np/1 are defined as
zero or more adjectives followed by one or more nouns. This is clearly not a full
definition of noun phrase, but is included on the grounds that the simple noun
phrases so defined will be useful features for the elimination rules. Finally, we
have isa/2 which identifies particular MSDs and skip_over/2 which is used
to skip over apparently unimportant tokens which do not have case, number or
gender defined.

%EXPLODING MSD CONSTANTS

msd(afcfda, [a,f,c,f,d,al).
msd (afcfdg, [a,f,c,f,d,gl).
msd(afcfdl, [a,f,c,f,d,1]).

#Parts of speech, always first letter
noun([MI|T],T) :- msd(M,[nl|_]).
verb([M|T],T) :- msd(M,[v|_]).

%GENDER
gender ([M|T] ,Gender,T) :- msd(M,[n,_,Gender|_]).
gender ([M|T],Gender,T) :- msd(M,[p,_,_,Gender|_]).

%DISAGREEMENT ON CASE, GENDER OR NUMBER

disoncase(M1,M2) :- case(M1,C1,_), case(M2,C2,_), \+ C1 = C2.
disongender(M1,M2) :- gender(M1,C1,_), gender(M2,C2,_), \+ C1 = C2.
disonnumb(M1,M2) :- numb(M1,Ci,_), numb(M2,C2,_), \+ C1 = C2.

%NOUN PHRASE

np(A,B) :- adjective_star(A,C), noun_plus(C,B).
%and backwards ..

np1(A,B) :- noun_plus(A,C), adjective_star(C,B).

noun_plus(A,B) :- noun(A,B).
noun_plus(A,B) :- noun(A,C), noun_plus(C,B).

%IDENTIFYING PARTICUAR MSDS
isa([HIT],H,T).

%FOR SKIPPING TO IMPORTANT WORDS

skip_over(A,B) :-
all_undefined_plus(A,B),
some_defined (B).

Fig. 3. Excerpt of background knowledge



3.3 Splitting the Data

P-Progol is currently unable to accept 181,065 (fairly complex) examples directly.
The data was therefore split according to the part-of-speech of the focus MSD
(the 3rd argument of the examples). This formed the 8 data sets for Noun (n),
Verb (v), Adjective (a), Pronoun (p), Adverb (r), Adposition (s), Numeral (m)
and Other (0) described in Table 2. The “Other” dataset covered conjunctions
(c) and particles (q) together. Although large by ILP standards, each of these
datasets was sufficiently small for P-Progol 2.4.7 running on Yap Prolog 4.1.15.

Although motivated by pragmatics, this splitting had a number of beneficial
effects. The split meant that all eight datasets could have been processed in
parallel as eight separate Yap processes. In fact, due to a lack of suitable machines
the work was spread between the first author’s Viglen laptop (233 MHz Pentium,
80 MBytes RAM) and Steve Moyle’s PC (266 MHz, 128 MBytes RAM). These
machines are denoted Y and O respectively in Table 2. Since we had 8 rule
sets induced for specific parts-of-speech we were able to index on the part-of-
speech by altering the induced rules to have the relevant part-of-speech as a first
argument.

In effect, we performed a single initial greedy split of the data as would be
done as the first step in a decision tree inducer such as TILDE[2]. Since many
of the clauses induced in earlier work on random samples of the complete data
set were specific to a particular part-of-speech (e.g. rmv(L,F,R) :- noun(L,L2)
...), we will not have missed many good clauses as a result of our greediness.

3.4 P-Progol Parameters and Constraints

As well as limiting the amount of data input to a particular P-Progol run, we also
constrained the Progol search in two major ways. The basic Progol algorithm
consists of taking a ‘seed’ uncovered positive example, producing a most specific
‘bottom clause’ which covers it and then using the bottom clause to guide the
search for the ‘best’ clause that covers the seed.

P-Progol has a number of built-in cost functions: the ‘best’ clause is that
which minimises this cost. In this work, we choose m-estimation [13, p.179-180]
to estimate the accuracy of clauses, and searched for the clause that maximised
estimated accuracy. An m value of 1 was chosen. Such a low value of m might
allow overfitting, so as a guard against this, only clauses which covered at least
10 positives were allowed. Such a stopping rule has the advantage of allowing the
search to be pruned. If a clause dips below 10 positives then there is no point
considering any specialisations of that clause, since they will also cover fewer
than 10 positives. Also, only clauses with at least 97% training accuracy were
allowed.

Two more constraints were required for learning to be feasible. Firstly, we
restricted each Progol search to a maximum of 5000 clauses—many searches hit
this threshold. Secondly, we limited clauses to a maximum of four literals, the
only exception being the Numeral (m) run because of its small example set.

Caching ([5]) was only used on two small runs to avoid any risk of running out
of RAM.



4 Results

4.1 The Induction Process

Considerable effort was expended in tracking down bugs in earlier versions of
Yap Prolog which involved indexing problems for large data sets. Ashwin Srini-
vasan and the first author also implemented improvements to P-Progol which
considerably improved its efficiency. Despite these (productive) efforts, the large
number of examples and the nature of the Progol search meant long P-Progol
runs sometimes lasting a few days (see Table 2).

Table 2. Data set and induction statistics

PoS| Pos| Neg| Tot|Rules|Time (hrs)|Searches|Machine|Caching||C|
a [29099| 5709| 34808| 1148 36.1 1513 Y on 4
m 1972 843| 2815| 223 2.6 305 Y off 5
n |2012514569| 34694 809 54.0 2767 (0] off 4
0 2279|21946| 24225 36 15.8 1960 Y on 4
P (26585 8480| 35065 1291 54.5 2750 (0] off 4
T 2500 4980| 7480 42 5.3 1941 O off |4
S 4865| 6025| 10890 90 2.3 293 Y off 4
v [11836(19253| 31089| 455 25.6 1599 (@) off 4
|All [99261[81805]181066] 4094] 196.2]  13128] | | ]

4.2 Structure of Induced Theories

P-Progol associates a clause label with each induced clause which gives the
positive and negative cover, and the clause’s ‘score’. In our case the score was
clause accuracy as estimated by the m-estimate. This allowed us to parameterise
the induced theory, converting a clause such as

rmv(L,F,R) :- case(R,n,R2), disonnumb(F,R2), disonnumb(F,R).
from the adjective theory, to:

rmv(a,L,F,R,score(1283,1,0.999094)) :-
case(R,n,R2), disonnumb(F,R2), disonnumb(F,R).

This allowed us to produce subsets of the complete theory by thresholding on
the m-estimated accuracy (EstAcc). For example, filtering out all rules with
EstAcc < 0.999 results in an under-general theory but with only ultra-reliable
rules remaining. Note also the added “a” index which indicates that the rule
only applies when F (the focus word) is an adjective.

The isa/3 predicate appears very often in the induced theory, indicating the
importance of MSD-specific rules. Also, as expected many of the rules look for



disagreement between neighbouring words. In the EstAcc > 0.999 exactly half
of the 240 rules used the disagreement predicates. Many of those that did not,
used two literals to specify particular disagreements.

In the complete theory, 2069 of the 4094 rules used only features of chunks
(words or simple phrases) right next to the focus word. In the EstAcc > 0.999
subtheory, 173 out of the 240 rules used only such features, showing that most
highly reliable rules are quite simple, identifying anomalies between neighbouring
words. Of the remaining 67 rules with EstAcc > 0.999, all of them only looked
one chunk beyond neighbouring chunks.

rmv(a,L,F,R,score(1130,0,0.999855)) :-
case(F,n,D), numb(F,d,D), disonnumb(F,R).
rmv(a,L,F,R,score(748,0,0.999781)) :-
case(R,1,R2), gender(R,f,R2), gender(F,m,_).
rmv(v,L,F,R,score(619,0,0.999001)) :-
numb(F,p,D), gender(F,n,D), isa(L,vcip3s__n,L2).
rmv(n,L,F,R,score(600,0,0.999301)) :-
numb(F,d,_), isa(L,spsl,L2).
rmv(n,L,F,R,score(433,0,0.999032)) :-
case(F,a,_), isa(L,spsg,L2).
rmv(m,L,F,R,score(14,0,0.980036)) :-
gender(F,f,_), isa(L,spsi,L2),
numb(L2,_,L3), case(L3,_,L4).

Fig. 4. A subset of the induced disambiguation theory

4.3 Consistency Checking and Ambiguity Reduction

Here we tested the consistency of each test sentence with the rules. As Table 3
shows, a good half of the correct readings are deemed inadmissible by the com-
plete theory. This is because it only takes one disambiguation rule to incorrectly
fire for a whole sentence to be rejected.

Table 3. Proportion of test sentence annotations rejected

|EstAcc >]|  0]96.0]97.0]98.0]98.5]99.0]99.5]99.7]99.9]
| [|49.5]48.6[46.4]36.9[32.4[24.7]15.8[10.9] 3.5]

To measure ambiguity reduction, we selected those 263 sentences from the
test set, which had fewer than 2000 possible annotations according to the am-
biguity classes of the words in the sentences. Many sentences have millions of



possible annotations, most of them plainly absurd, so we do not wish to re-
ceive credit for eliminating these. Table 4 shows the ambiguity reduction factor
(ARF) for each subtheory: we summed the number of possible annotations for
each sentences in the test set giving a total of 81634 annotations. To get the
ARF we divided this number by the number of annotations consistent with the
rules. We also give the rejection error rate (RER), the percentage of times that
the annotation given in the test set was inconsistent with the rules.

Table 4. Per sentence ambiguity reduction factor and rejection rate, for sentences with
fewer than 2000 possible annotations

|EstAcc >]|  0]96.0]97.0]98.0]98.5]99.0]99.5]99.7]99.9]

ARF 67.3(65.1/56.6|38.0(29.4(21.1{10.6| 6.9 2.7
RER 25.5(24.7|22.1|17.5(13.3| 8.7| 3.0| 2.3| 0.4

The ambiguity reduction factor is good, even the EstAcc > 0.999 theory
reduces sentence ambiguity by nearly a third. However, to use the rules to reduce
ambiguity, we should be almost guaranteed not to reject the correct annotation;
this means only the small theories composed only of highly reliable rules should
be used.

4.4 Error Detection

The 0.4% RE for the EstAcc > 0.999 was due to a single test set annota-
tion being rejected. The annotated test sentence was: “[Winston/npmsn] [in/ccs]
[Julia/npfsn][sta/vcip3d__n][se/px______ y] [o¢arana/afpmdn] [objela/vmps_sfa]
[./xperiod]” (“Delighted, Winston and Julia embraced.”) This annotation was
rejected by this rule:

rmv(a,L,F,R,score(1130,0,0.999855)) :-
case(F,n,D), numb(F,d,D), disonnumb(F,R).

on the grounds that dual nominative adjectives can not be followed by any
word that does not have the same number. This rules out the “o¢arana/afpmdn,
objela/vmps_sfa” annotation

Upon inspection we found that the rule was correct to reject this annotation:
“objela” (embraced) should have been tagged as dual not singular. This lead
us to use the EstAcc > 0.999 theory to look for other possible errors in the
complete test set. To help us do this we wrote a simple Prolog interface which
flagged possible errors and ezplained why they were suspected errors. Figure 5
shows how the interface flagged the “objela” error.

This demonstrates two points. Firstly our disambiguation rules can be used
to detect incorrect annotations, and provide an explanation of why the anno-
tation is incorrect. Secondly, our rules are constraints that apply not only to



**ERROR DETECTED**
[(Winston_BOS,npmsn), (in,ccs), (Julija,npfsn), (sta,vcip3d__n),(se,px______ )1
ocxarana,afpmdn <= HERE

[(objela,vmps_sfa), (.,xperiod)]

Constraint number 1 confidence score(1130,0,0.999855)

because:
ocxarana,afpmdn is ambiguous, and is (apparently) an adjective

and we can not also have:

ocxarana,afpmdn with case: n

ocxarana,afpmdn with numb: d

objela,vmps_sfa and ocxarana,afpmdn disagreeing on number
ook ok ok ok ok

Enter y if this is a real error

Fig. 5. Interface for annotation error flagging

the focus word. Here, “ofarana”, the focus word, was annotated correctly—the
inconsistency was detected in its context.

However, of the 24 alleged test set errors flagged by our constraints, only
9 turned out to be actual errors. The other 15 were examples of rare atypical
constructions. All the constraints which incorrectly flagged errors had EstAcc >
0.999. For example, one had covered 761 positives and 0 negatives in the training
data. So the large number of errors is perhaps surprising and points to possible
over-fitting with an inadequately large training dataset. On the other hand, as
an annotation validation tool, performance is reasonable, and it would be easy
to expand the explanations and allow the user to correct (real) errors as they
are presented.

4.5 Tagging Accuracy

Our MSD elimination rules can not be used as a standalone tagger: they rely
too heavily on disambiguated context and there is no guarantee that a single
MSD will be returned for each word after incorrect MSDs have been eliminated.
We propose that they can be used as a filter to reject inconsistent annotations
produced by another tagger, such as those mentioned in Section 1.

Here we combine our rules with the simplest tagger—one that returns the
most likely tag based on lexical statistics, without taking context into account.
Our goal is to measure the degree to which accuracy increases once the rules are
used to filter out incorrect annotations.

Due to problems with Sicstus Prolog, experiments were conducted on a subset
of 526 of the original 650 test sentences. These were sentences with fewer than
2000 possible annotations. Choosing the most likely tag according to lexical



statistics produces an accuracy of 83.3% on this test set. We combined this
tagger with our rules by doing a uniform cost search i.e. (A* with h = 0) for the
most probable sentence annotation according to the lexical statistics, which was
consistent with our rules.

Using the complete theory we achieved 86.6%. Some subtheories did a little
better, for example the EstAcc > 0.985 accuracy was 87.5% So we have an
improvement, albeit a modest one. Our experiments with error flagging reported
in Section 4.4 indicate that a major barrier to improved performance is that our
constraints frequently reject correct annotations.

It remains to be seen what improvement, if any, can be achieved when marry-
ing our rules to more sophisticated taggers such as those mentioned in Section 1.
Clearly the combination examined here has far lower performance than the tag-
gers mentioned in Section 1.

5 Conclusions and Future Work

In this work, we have established the following positive results:

1. P-Progol can be applied directly to datasets of at least 30,000 examples.
With appropriate use of sampling, it is likely that this could upper limit
could be increased considerably.

2. We have induced MSD elimination rules which can be used to filter out incor-
rect annotations. The symbolic nature of the rules means that an explanation
is also supplied. This makes using these rules particularly appropriate for an
interactive system—we intend to use the rules induced here to check the
existing MULTEXT-East corpus

We have also established the following negative result:

1. The performance of the MSD elimination rules as a standalone system or in
tandem with a crude tagger based on lexical statistics is considerably worse
than that of competing taggers.

Apart from checking the MULTEXT-East corpus with the rules, we also intend
to use the rules to check the annotations proposed by the taggers mentioned
in Section 1. By filtering out at least some incorrect annotations, the tagging
accuracy should increase.
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